Choosing shrinkage estimators for regression problems
暂无分享,去创建一个
[1] C. Stein. Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .
[2] Bernard G. Greenberg,et al. MATRIX INVERSION, ITS INTEREST AND APPLICATION IN ANALYSIS OF DATA* , 1959 .
[3] Stanley L. Sclove,et al. Improved Estimators for Coefficients in Linear Regression , 1968 .
[4] W. Strawderman. Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .
[5] D. Lindley,et al. Bayes Estimates for the Linear Model , 1972 .
[6] A. Baranchik. Inadmissibility of Maximum Likelihood Estimators in Some Multiple Regression Problems with Three or More Independent Variables , 1973 .
[7] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[8] S. Geisser. A predictive approach to the random effect model , 1974 .
[9] A. F. Smith,et al. Ridge-Type Estimators for Regression Analysis , 1974 .
[10] Grace M. Carter,et al. Empirical Bayes Methods Applied to Estimating Fire Alarm Probabilities , 1974 .
[11] A. E. Hoerl,et al. Ridge regression:some simulations , 1975 .
[12] B. Efron,et al. Data Analysis Using Stein's Estimator and its Generalizations , 1975 .
[13] R. Snee,et al. Ridge Regression in Practice , 1975 .
[14] W. Hemmerle. An Explicit Solution for Generalized Ridge Regression , 1975 .
[15] Edward E. Leamer,et al. A Bayesian Interpretation of Pretesting , 1976 .
[16] M. Stone,et al. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[17] N. Wermuth,et al. A Simulation Study of Alternatives to Ordinary Least Squares , 1977 .