Choosing shrinkage estimators for regression problems

A Bayesian formulation of the canonical form of the standard regression model is used to compare various Stein-type estimators and the ridge estimator of regression coefficients, A particular (“constant prior”) Stein-type estimator having the same pattern of shrinkage as the ridge estimator is recommended for use.

[1]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .

[2]  Bernard G. Greenberg,et al.  MATRIX INVERSION, ITS INTEREST AND APPLICATION IN ANALYSIS OF DATA* , 1959 .

[3]  Stanley L. Sclove,et al.  Improved Estimators for Coefficients in Linear Regression , 1968 .

[4]  W. Strawderman Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .

[5]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[6]  A. Baranchik Inadmissibility of Maximum Likelihood Estimators in Some Multiple Regression Problems with Three or More Independent Variables , 1973 .

[7]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[8]  S. Geisser A predictive approach to the random effect model , 1974 .

[9]  A. F. Smith,et al.  Ridge-Type Estimators for Regression Analysis , 1974 .

[10]  Grace M. Carter,et al.  Empirical Bayes Methods Applied to Estimating Fire Alarm Probabilities , 1974 .

[11]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[12]  B. Efron,et al.  Data Analysis Using Stein's Estimator and its Generalizations , 1975 .

[13]  R. Snee,et al.  Ridge Regression in Practice , 1975 .

[14]  W. Hemmerle An Explicit Solution for Generalized Ridge Regression , 1975 .

[15]  Edward E. Leamer,et al.  A Bayesian Interpretation of Pretesting , 1976 .

[16]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[17]  N. Wermuth,et al.  A Simulation Study of Alternatives to Ordinary Least Squares , 1977 .