An Introduction to Symmetric Inflated Probabilities

Traditionally, probability is treated as a function that takes values in the interval [0, 1]. All conventional interpretations of probability support this assumption, while all popular formal descriptions, e.g., axioms for probability, such as Kolmogorov’s axioms, canonize this premise. However, researchers found that negative, as well as larger than 1 probabilities could be a useful tool in physics. Some even assert that probabilities that can be negative, larger than 1 or less than −1 are necessary for physics. Here we develop an axiomatic system for such probabilities, which are called symmetric inflated probabilities and reflect interaction of particles and antiparticles, and study their properties.

[1]  Jose Acacio de Barros,et al.  Decision Making for Inconsistent Expert Judgments Using Negative Probabilities , 2013, QI.

[2]  G. A. Baker,et al.  Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space , 1958 .

[3]  W. Belzig,et al.  On the problem of negative probabilities in time-resolved full counting statistics , 2009 .

[4]  H. Hofmann How to simulate a universal quantum computer using negative probabilities , 2008, 0805.0029.

[5]  W. Hwang,et al.  Explicit solutions for negative-probability measures for all entangled states , 1996 .

[6]  G. Li,et al.  High-spin yrast and yrare structures in 112In , 2010 .

[7]  Howard J. Schnitzer,et al.  Quantum mechanical systems with indefinite metric II , 1961 .

[8]  C. Wu,et al.  Frequency Distribution of Resonance Line Versus Delay Time , 1960 .

[9]  Andreas Blass,et al.  Negative probability , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Paul Adrien Maurice Dirac,et al.  Spinors in Hilbert Space , 1974 .

[11]  R. E. Holland,et al.  TIME SPECTRA OF FILTERED RESONANCE RADIATION OF Fe$sup 5$$sup 7$ , 1960 .

[12]  Extended Probabilities: Mathematical Foundations , 2009, 0912.4767.

[13]  J. Yearsley,et al.  Negative probabilities, Fine's theorem, and linear positivity , 2013 .

[14]  Colin J. Neill,et al.  Antipatterns: Identification, Refactoring, and Management , 2005 .

[15]  M. Kline Mathematics: The Loss of Certainty , 1982 .

[16]  J. A. Barros,et al.  Quantum Cognition, Neural Oscillators, and Negative Probabilities , 2017 .

[17]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  E. Wigner,et al.  Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .

[19]  Peter A. Forsyth,et al.  Negative coefficients in two-factor option pricing models , 2003 .

[20]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[21]  Gary Oas,et al.  Negative probabilities and counter-factual reasoning in quantum cognition , 2014, 1404.3921.

[22]  R. Feynman Elementary Particles and the Laws of Physics: The reason for antiparticles , 1987 .

[23]  W. Heisenberg Über die inkohärente Streuung von Röntgenstrahlen , 1985 .

[24]  Suraj N. Gupta QUANTUM MECHANICS WITH AN INDEFINITE METRIC , 1957 .

[25]  M. Gell-Mann,et al.  Decoherent Histories Quantum Mechanics with One 'Real' Fine-Grained History , 2011, 1106.0767.

[26]  D. Duffie,et al.  Modeling term structures of defaultable bonds , 1999 .

[27]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .

[28]  W. Pauli On Dirac's New Method of Field Quantization , 1943 .

[29]  M. Burgin Negative probability in the framework of combined probability , 2013, 1306.1166.

[30]  R. E. Holland,et al.  TIME DEPENDENCE OF RESONANTLY FILTERED GAMMA RAYS FROM Fe$sup 5$$sup 7$ , 1960 .

[31]  Gunter Ludwig,et al.  CHAPTER IV – The Physical Interpretation of Quantum Mechanics , 1968 .

[32]  J. Acacio de Barros,et al.  Exploring non-signalling polytopes with negative probability , 2014, 1404.3831.

[33]  Paul Adrien Maurice Dirac,et al.  A Theory of Electrons and Protons , 1930 .

[34]  W. Mückenheim An Extended-Probability Response to the Einstein-Podolsky-Rosen Argument , 1988 .

[35]  Connor,et al.  Negative probability and the distributions of dwell, transmission, and reflection times for quantum tunneling. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[36]  Saul Youssef Physics with exotic probability theory , 2001 .

[37]  Frederick M. Kronz,et al.  Actual and Virtual Events in the Quantum Domain Fred Kronz , 2009 .

[38]  Mark Burgin,et al.  Interpretations of Negative Probabilities , 2010, 1008.1287.

[39]  G. Meissner,et al.  Negative Probabilities in Financial Modeling , 2011 .

[40]  D. Sokolovski Weak values, 'negative probability', and the uncertainty principle , 2007 .

[41]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[42]  E. H. Allen Negative Probabilities and the Uses of Signed Probability Theory , 1976, Philosophy of Science.

[43]  G. Venter Generalized Linear Models beyond the Exponential Family with Loss Reserve Applications* , 2007, ASTIN Bulletin.

[44]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[45]  V. B. Berestet͡skiĭ,et al.  Quantum Electrodynamics , 2021, Introduction to Quantum Mechanics.

[46]  Jean-Pierre Vigier,et al.  A review of extended probabilities , 1986 .

[47]  Andrew Koenig,et al.  Patterns and Antipatterns , 1998, J. Object Oriented Program..

[48]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[49]  Samson Abramsky,et al.  An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.

[50]  Mark Burgin,et al.  Larger than One Probabilities in Mathematical and Practical Finance , 2012 .

[51]  Negative Probability and Uncertainty Relations , 2001, hep-th/0105226.

[52]  E. Galvão Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.

[53]  Walther,et al.  Feynman's approach to negative probability in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[54]  R. Mattessich FROM ACCOUNTING TO NEGATIVE NUMBERS: A SIGNAL CONTRIBUTION OF MEDIEVAL INDIA TO MATHEMATICS , 1998 .

[55]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .