Developing realistic grain boundary networks for use in molecular dynamics simulations

A Voronoi/Delaunay technique which allows for the construction of three-dimensional grain boundary networks with special boundaries for use in molecular dynamics simulations is presented. Using this technique, we make a series of samples containing clusters of grains with given configurations of CSL, low-angle tilt, and general high-angle boundaries and demonstrate the importance of including special grain boundaries in three-dimensional grain boundary networks in the study of the mechanical properties of nanocrystalline systems.

[1]  H. V. Swygenhoven,et al.  Atomic positional disorder in fcc metal nanocrystalline grain boundaries , 2003 .

[2]  H. Van Swygenhoven,et al.  Atomistic simulation of dislocation emission in nanosized grain boundaries , 2003 .

[3]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[4]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[5]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[6]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[7]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[8]  Knut Marthinsen,et al.  Comparative analysis of the size distributions of linear, planar, and spatial poisson Voronoi cells , 1996 .

[9]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[10]  H. Van Swygenhoven,et al.  Dimples on Nanocrystalline Fracture Surfaces As Evidence for Shear Plane Formation , 2003, Science.

[11]  H. V. Swygenhoven,et al.  Unconventional deformation mechanism in nanocrystalline metals , 2003 .

[12]  V. Gertsman Geometrical theory of triple junctions of CSL boundaries. , 2001, Acta crystallographica. Section A, Foundations of crystallography.

[13]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[14]  D. Wolf,et al.  Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation , 2004, Nature materials.

[15]  H. V. Swygenhoven,et al.  Atomic mechanism for dislocation emission from nanosized grain boundaries , 2002 .

[16]  M. Frary,et al.  Combination rule for deviant CSL grain boundaries at triple junctions , 2003 .

[17]  M. Victoria,et al.  Nanocrystalline electrodeposited Ni: microstructure and tensile properties , 2002 .

[18]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[19]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[20]  Alfredo Caro,et al.  Grain-boundary structures in polycrystalline metals at the nanoscale , 2000 .

[21]  Peter M. Derlet,et al.  Atomistic simulations as guidance to experiments , 2003 .

[22]  D. Brandon,et al.  The structure of high-angle grain boundaries , 1966 .

[23]  Atomistic modeling of nanocrystalline ferromagnets , 2003 .

[24]  H. V. Swygenhoven,et al.  Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance , 2004 .

[25]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[26]  D. Gross,et al.  Constructing microstructures of poly- and nanocrystalline materials for numerical modeling and simulation , 2002 .

[27]  A. Garbacz,et al.  Modelling of CSL boundaries distribution in polycrystals , 1989 .

[28]  H. V. Swygenhoven,et al.  On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation , 2002 .

[29]  J. Mackenzie,et al.  SECOND PAPER ON STATISTICS ASSOCIATED WITH THE RANDOM DISORIENTATION OF CUBES , 1958 .

[30]  Jean-François Molinari,et al.  Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study , 2005 .