Calculations of frequency‐dependent molecular magnetizabilities with quasi‐relativistic time‐dependent generalized unrestricted Hartree–Fock method

The time‐dependent generalized unrestricted Hartree–Fock (TDGUHF) method combined with a two‐component quasi‐relativistic Hamiltonian generated from the Douglas–Kroll–Hess (DKH) transformation was developed to calculate frequency‐dependent molecular magnetizabilities, which are the linear response quantity of a molecule to an external magnetic field. By calculating the magnetizabilities of H2X (X = O, S, Se, and Te), the noble gases (He, Ne, Ar, Kr, and Xe) and small open shell molecules (CH2, CH3, and O2), we found that scalar relativistic terms affect mainly the diamagnetic magnetizability and spin‐orbit (SO) interaction affects the paramagnetic magnetizability. © 2007 Wiley Periodicals, Inc. J Comput Chem 28: 740–747, 2007

[1]  Hiroshi Nakatsuji,et al.  Dirac–Fock calculations of magnetic shielding constants: hydrogen molecule and hydrogen halides , 1999 .

[2]  R. G. Meisenheimer,et al.  DIAMAGNETIC SUSCEPTIBILITIES OF SIMPLE HYDROCARBONS AND VOLATILE HYDRIDES , 1960 .

[3]  D. Santry,et al.  Calculation of frequency-dependent polarizabilities by means of SCF perturbation theory , 1979 .

[4]  Hiroshi Nakatsuji,et al.  Quasirelativistic theory for the magnetic shielding constant. I. Formulation of Douglas-Kroll-Hess transformation for the magnetic field and its application to atomic systems , 2003 .

[5]  Hiroshi Nakatsuji,et al.  Quasirelativistic study of 125Te nuclear magnetic shielding constants and chemical shifts , 2001, J. Comput. Chem..

[6]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[7]  W. Hüttner,et al.  The diamagnetic‐susceptibility anisotropy of O2(3Σ) from the temperature dependence of the Cotton–Mouton effect , 1983 .

[8]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[9]  K. Itoh Electron spin resonance of an aromatic hydrocarbon in its quintet ground state , 1967 .

[10]  Kenneth Ruud,et al.  Second- and third-order spin-orbit contributions to nuclear shielding tensors , 1999 .

[11]  K. Ruud,et al.  The effect of correlation on molecular magnetizabilities and rotational g tensors , 1997 .

[12]  Pekka Pyykkö,et al.  On the relativistic theory of NMR chemical shifts , 1983 .

[13]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[14]  K. Awaga,et al.  Single-Molecule Magnets , 2003 .

[15]  Trygve Helgaker,et al.  Hartree-Fock limit magnetizabilities from London orbitals , 1993 .

[16]  S. Karna,et al.  Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program , 1991 .

[17]  H. Nakatsuji,et al.  Quasirelativistic theory for magnetic shielding constants. II. Gauge-including atomic orbitals and applications to molecules , 2003 .

[18]  Hiroshi Nakatsuji,et al.  Dirac–Fock calculations of the magnetic shielding constants of protons and heavy nuclei in XH2 (X=O, S, Se, and Te): a comparison with quasi-relativistic calculations , 2000 .

[19]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: tungsten hexahalides and tetraoxide , 1996 .

[20]  H. Fukui,et al.  Calculation of nuclear magnetic shieldings. XII. Relativistic no-pair equation , 1998 .

[21]  D. Yeager,et al.  A multiconfigurational linear response study of N2 , 1989 .

[22]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[23]  B. Minaev Ab initio study of the ground state properties of molecular oxygen. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[24]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[25]  D. M. Bishop,et al.  Calculations of magnetic properties. IV. Electron‐correlated magnetizabilities and rotational g factors for nine small molecules , 1994 .

[26]  Isao Morishima,et al.  Effect of the heavy atom on the nuclear shielding constant. I. The proton chemical shifts in hydrogen halides , 1973 .

[27]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[28]  J. Autschbach,et al.  Calculating molecular electric and magnetic properties from time-dependent density functional response theory , 2002 .