Improving full-field identification using progressive model enrichments

Abstract Full-field identification methods such as finite element model updating or integrated digital image correlation minimize the gap between an experiment and a simulation by iterative schemes. Within the algorithms residual fields and sensitivity fields are used to achieve identification. This paper discusses how these same fields can be used to assess the quality of the identification and guide toward successive enrichment of the constitutive model to progressively reduce the experiment-model gap. A cyclic experiment on a dog-bone sample made of aluminum alloy is used as an example to identify the parameters of an elastoplastic model with exponential hardening and anisotropic yielding.

[1]  Emmanuel Pagnacco,et al.  Parameter Identification from Mechanical Field Measurements using Finite Element Model Updating Strategies , 2012 .

[2]  M. Ashby,et al.  Engineering Materials 2: An Introduction to Microstructures, Processing and Design , 1986 .

[3]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[4]  Mgd Marc Geers,et al.  Comparison of the identification performance of conventional FEM updating and integrated DIC , 2016 .

[5]  Stéphane Roux,et al.  Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC , 2015 .

[6]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[7]  Stéphane Roux,et al.  Optimization of a Cruciform Specimen Geometry for the Identification of Constitutive Parameters Based Upon Full‐Field Measurements , 2016 .

[8]  Franccois Hild,et al.  Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review , 2006 .

[9]  Stéphane Roux,et al.  Identification of a set of macroscopic elastic parameters in a 3D woven composite: Uncertainty analysis and regularization , 2015 .

[10]  J. Gelin,et al.  Identification of material parameters directly from metal forming processes , 1998 .

[11]  J. Lemaître,et al.  Handbook of materials behavior models , 2001 .

[12]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  Antonio Baldi,et al.  Full field methods and residual stress analysis in orthotropic material. II: Nonlinear approach , 2007 .

[14]  R. Clough,et al.  Finite element applications in the characterization of elastic solids , 1971 .

[15]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[16]  Fabrice Pierron,et al.  On the use of simulated experiments in designing tests for material characterization from full-field measurements , 2012 .

[17]  Michael A. Sutton,et al.  Computer Vision-Based, Noncontacting Deformation Measurements in Mechanics: A Generational Transformation , 2013 .

[18]  Stéphane Roux,et al.  A finite element formulation to identify damage fields: the equilibrium gap method , 2004 .

[19]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[20]  François Hild,et al.  On the Evaluation of Stress Triaxiality Fields in a Notched Titanium Alloy Sample Via Integrated Digital Image Correlation , 2015 .

[21]  Klaus Pöhlandt,et al.  Formability of Metallic Materials , 2000 .

[22]  H. J. Kleemola,et al.  On the strain-hardening parameters of metals , 1974 .

[23]  Michel Coret,et al.  Robust identification of elasto-plastic constitutive law parameters from digital images using 3D kinematics , 2013 .

[24]  John E. Mottershead,et al.  Shape features and finite element model updating from full-field strain data , 2011 .

[25]  Marc Bonnet,et al.  Inverse problems in elasticity , 2005 .

[26]  Pierre Vacher,et al.  Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters , 2011 .

[27]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .

[28]  Julien Réthoré,et al.  A fully integrated noise robust strategy for the identification of constitutive laws from digital images , 2010 .

[29]  Fabrice Pierron,et al.  Applying the Virtual Fields Method to the identification of elasto-plastic constitutive parameters , 2006 .

[30]  Michael A. Sutton,et al.  Identification of elasto-visco-plastic parameters and characterization of Lüders behavior using digital image correlation and the virtual fields method , 2008 .

[31]  Stéphane Roux,et al.  Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches , 2006 .

[32]  S. Roux,et al.  Comparison of Local and Global Approaches to Digital Image Correlation , 2012 .

[33]  Dimitri Debruyne,et al.  Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix , 2007 .

[34]  Stéphane Roux,et al.  Time‐resolved integrated digital image correlation , 2015 .

[35]  Stéphane Roux,et al.  Integrated Digital Image Correlation for the Identification of Mechanical Properties , 2009, MIRAGE.

[36]  Jd Jan Janssen,et al.  Determination of the elasto-plastic properties of aluminium using a mixed numerical–experimental method , 1998 .