Tensile properties of flexible carbon nanotube film/PVA composite at various strain rates

[1]  Huigai Li,et al.  Tensile properties and failure mechanism of enhanced carbon nanotube/epoxy resin composite strips , 2023, Polymer Composites.

[2]  Jiaping Lin,et al.  Construction of carbon nanotubes/bismaleimide composite films with superior tensile strength and toughness , 2021 .

[3]  Chenguang Huang,et al.  Dynamic Mechanical Properties of Several High-Performance Single Fibers , 2021, Materials.

[4]  Lulu Liu,et al.  Macroscopic numerical simulation method of multi-phases STF impregnated Kevlar fabrics. Part 1: Quasi-static and dynamic mechanical test , 2021 .

[5]  Chenguang Huang,et al.  Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact , 2021 .

[6]  J. N. Wang,et al.  High-strength carbon nanotube/epoxy resin composite film from a controllable cross-linking reaction , 2021, Composites Part A: Applied Science and Manufacturing.

[7]  Pengfei Wang,et al.  Revealing the mechanical strengthening mechanisms in twisting CNT ribbon with the effect of interface and boundary conditions , 2021 .

[8]  Hyunho Shin,et al.  A Study on the Effects of Specimen Geometry on Measurement Accuracy of Dynamic Constitutive Properties of Metals Using SHTB , 2020, International Journal of Precision Engineering and Manufacturing.

[9]  R. Reis,et al.  Metal matrix composite material reinforced with metal wire and produced with gas metal arc welding , 2019, Journal of Composite Materials.

[10]  Enlai Gao,et al.  Interfacial failure boosts mechanical energy dissipation in carbon nanotube films under ballistic impact , 2019, Carbon.

[11]  H. Ghasemi,et al.  Mechanical properties of carbon nanotube‐filled polyethylene composites: A molecular dynamics simulation study , 2018, Polymer Composites.

[12]  Jason K. Streit,et al.  Extreme Energy Absorption in Glassy Polymer Thin Films by Supersonic Micro-projectile Impact , 2018, Materials Today.

[13]  M. Miao,et al.  A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies , 2018 .

[14]  G. Giatsidis,et al.  Anisotropic architecture and electrical stimulation enhance neuron cell behaviour on a tough graphene embedded PVA: alginate fibrous scaffold , 2018, RSC advances.

[15]  Jae-Hwang Lee,et al.  Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites. , 2018, Nano letters.

[16]  N. Aluru,et al.  Size effect on brittle and ductile fracture of two-dimensional interlinked carbon nanotube network , 2017 .

[17]  Timon Rabczuk,et al.  Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model , 2017 .

[18]  Khader M. Hamdia,et al.  Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions , 2017, International Journal of Fracture.

[19]  Qingwen Li,et al.  The loading-rate dependent tensile behavior of CNT film and its bismaleimide composite film , 2017 .

[20]  Hang Zhan,et al.  New processing method to fabricate high-performance carbon-nanotube/polyvinyl alcohol composite films , 2016 .

[21]  Jia‐Horng Lin,et al.  Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: Preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness , 2016 .

[22]  Tongxi Yu,et al.  Strengthening and failure mechanisms of individual carbon nanotube fibers under dynamic tensile loading , 2016 .

[23]  E. Siochi,et al.  Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes , 2015 .

[24]  Xingji Li,et al.  Effect of proton irradiation on mechanical properties of low‐density polyethylene/multiwalled carbon nanotubes composites , 2015 .

[25]  J. Wang,et al.  High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity , 2014, Nature Communications.

[26]  Jinyuan Zhou,et al.  A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects , 2012 .

[27]  K. Liao,et al.  Failure mechanisms of carbon nanotube fibers under different strain rates , 2012 .

[28]  Xin Sun,et al.  Effects of sample geometry and loading rate on tensile ductility of TRIP800 steel , 2012 .

[29]  Kenneth S. Vecchio,et al.  Hopkinson Bar Loaded Fracture Experimental Technique: A Critical Review of Dynamic Fracture Toughness Tests , 2009 .

[30]  J. Greer,et al.  Strain Rate Effects in the Mechanical Response of Polymer‐Anchored Carbon Nanotube Foams , 2008, 0804.0868.

[31]  John W. Gillespie,et al.  Hopkinson bar experimental technique: A critical review , 2004 .

[32]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[33]  P. Mele,et al.  Tensile mechanical properties of PEEK films over a wide range of strain rates. II , 1997 .

[34]  J. N. Wang,et al.  High-strength and toughness carbon nanotube fiber/resin composites by controllable wet-stretching and stepped pressing , 2022, Carbon.

[35]  Qiang Zhang,et al.  Quasi-static and dynamic compression behavior of glass cenospheres/5A03 syntactic foam and its sandwich structure , 2018 .

[36]  Timon Rabczuk,et al.  A computational library for multiscale modeling of material failure , 2013, Computational Mechanics.

[37]  Jinyuan Zhou,et al.  Load-transfer efficiency and mechanical reliability of carbon nanotube fibers under low strain rates , 2013 .