The spectrum of focal segmental glomerulosclerosis: new insights

Purpose of reviewFocal segmental glomerulosclerosis (FSGS) is a disease with diverse histologic patterns and etiologic associations. Genetic, toxic, infectious and inflammatory mediators have been identified. This review will focus on new evidence supporting the potential mechanistic basis underlying the histologic variants and their clinical relevance. Recent findingsEvidence from animal models and in-vitro studies suggests that injury inherent within or directed to the podocyte is a central pathogenetic factor. Disruption of signaling from any of the podocyte's specialized membrane domains, including slit diaphragm, apical and basal membranes, or originating at the level of the actin cytoskeleton, may promote the characteristic response of foot process effacement. Irreversible podocyte stress leading to podocyte depletion through apoptosis or detachment is a critical mechanism in most forms of FSGS. In the collapsing variant, podocyte dysregulation leads to podocyte dedifferentiation and glomerular epithelial cell proliferation. SummaryTranslation studies in humans and new evidence from animal models have provided mechanistic insights into the diverse phenotypes of FSGS.

[1]  A. Rich A hitherto undescribed vulnerability of the juxtamedullary glomeruli in lipoid nephrosis. , 1957, Bulletin of the Johns Hopkins Hospital.

[2]  R. Habib Focal glomerular sclerosis , 1973 .

[3]  R. Cotran,et al.  Pathogenesis of polycation-induced alterations ("fusion") of glomerular epithelium. , 1977, Laboratory investigation; a journal of technical methods and pathology.

[4]  A. Howie,et al.  The glomerular tip lesion: A previously undescribed type of segmental glomerular abnormality , 1984, The Journal of pathology.

[5]  A. Howie Changes at the glomerular tip: A feature of membranous nephropathy and other disorders associated with proteinuria , 1986, The Journal of pathology.

[6]  V. D’Agati,et al.  Pathology of HIV-associated nephropathy: a detailed morphologic and comparative study. , 1989, Kidney international.

[7]  H. Rennke,et al.  Pathogenesis and significance of nonprimary focal and segmental glomerulosclerosis. , 1989, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[8]  M. Nagata,et al.  Glomerular damage after uninephrectomy in young rats. II. Mechanical stress on podocytes as a pathway to sclerosis. , 1992, Kidney international.

[9]  E. Orringer,et al.  Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. , 1992, The New England journal of medicine.

[10]  D. Adu,et al.  Renal biopsy findings in hypertensive patients with proteinuria , 1992, The Lancet.

[11]  V. D’Agati The many masks of focal segmental glomerulosclerosis. , 1994, Kidney international.

[12]  R. Falk,et al.  Collapsing glomerulopathy: a clinically and pathologically distinct variant of focal segmental glomerulosclerosis. , 1994, Kidney international.

[13]  M. Schwartz,et al.  Primary focal segmental glomerular sclerosis in adults: prognostic value of histologic variants. , 1995, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[14]  R. Colvin,et al.  Preliminary description of focal segmental glomerulosclerosis in patients with renovascular disease , 1996, The Lancet.

[15]  E. Vimr,et al.  In vivo enzymatic removal of alpha 2-->6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[16]  V. D’Agati,et al.  Idiopathic collapsing focal segmental glomerulosclerosis: a clinicopathologic study. , 1996, Kidney international.

[17]  S. Takebayashi,et al.  [Focal glomerulosclerosis]. , 1997, Ryoikibetsu shokogun shirizu.

[18]  John P. Johnson,et al.  Focal segmental glomerulosclerosis associated with nephrotic syndrome in cholesterol atheroembolism: clinicopathological correlations. , 1997, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[19]  N. Gretz,et al.  Progression of glomerular diseases: is the podocyte the culprit? , 1998, Kidney international.

[20]  Arthur W. Toga,et al.  Neuroimaging Findings in Twins Discordant for Alzheimer’s Disease , 1998, Dementia and Geriatric Cognitive Disorders.

[21]  L Peltonen,et al.  Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. , 1998, Molecular cell.

[22]  M. Wetzler,et al.  Interferon-alpha-associated focal segmental glomerulosclerosis with massive proteinuria in patients with chronic myeloid leukemia following high dose chemotherapy. , 1998, Cancer.

[23]  C. Mandet,et al.  Podocytes undergo phenotypic changes and express macrophagic-associated markers in idiopathic collapsing glomerulopathy. , 1998, Kidney international.

[24]  Interferon‐α‐associated focal segmental glomerulosclerosis with massive proteinuria in patients with chronic myeloid leukemia following high dose chemotherapy , 1998 .

[25]  H. Rennke,et al.  Collapsing glomerulopathy in HIV and non-HIV patients: a clinicopathological and follow-up study. , 1999, Kidney international.

[26]  C. Alpers,et al.  Collapsing glomerulopathy in renal allografts: a morphological pattern with diverse clinicopathologic associations. , 1999, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[27]  S. Jordan,et al.  Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. , 1999, Journal of the American Society of Nephrology : JASN.

[28]  V. D’Agati,et al.  The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. , 1999, Journal of the American Society of Nephrology : JASN.

[29]  V. D’Agati,et al.  Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation. , 2000, Kidney international.

[30]  K. Dahan,et al.  NPHS 2 , encoding the glomerular protein podocin , is mutated in autosomal recessive steroid-resistant nephrotic syndrome , 2000 .

[31]  J. Jennette,et al.  Idiopathic collapsing glomerulopathy in children , 2000, Pediatric nephrology (Berlin, West).

[32]  J. Kaplan,et al.  Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis , 2000, Nature Genetics.

[33]  G. Lipkin,et al.  Glomerular prolapse as precursor of one type of segmental sclerosing lesions , 2000, The Journal of pathology.

[34]  J. Kaplan,et al.  Mutations in ACTN 4 , encoding α-actinin-4 , cause familial focal segmental glomerulosclerosis , 2000 .

[35]  Corinne Antignac,et al.  NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome , 2000, Nature Genetics.

[36]  J. Sanes,et al.  Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse , 2001, Nature.

[37]  A. Bagga,et al.  Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. , 2001, Kidney international.

[38]  P. Fine,et al.  Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. , 2001, Journal of the American Society of Nephrology : JASN.

[39]  V. D’Agati,et al.  Obesity-related glomerulopathy: an emerging epidemic. , 2001, Kidney international.

[40]  P. Bruneval,et al.  Posttransplantation relapse of FSGS is characterized by glomerular epithelial cell transdifferentiation. , 2001, Journal of the American Society of Nephrology : JASN.

[41]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[42]  M. Zand,et al.  Zonal distribution of glomerular collapse in renal allografts: possible role of vascular changes. , 2002, Human pathology.

[43]  J. Kopp,et al.  Molecular identification of SV40 infection in human subjects and possible association with kidney disease. , 2002, Journal of the American Society of Nephrology : JASN.

[44]  J. Haigh,et al.  Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. , 2003, The Journal of clinical investigation.

[45]  E. Unanue,et al.  CD2-Associated Protein Haploinsufficiency Is Linked to Glomerular Disease Susceptibility , 2003, Science.

[46]  H. Kawachi,et al.  Urinary Sediment Podocalyxin in Children with Glomerular Diseases , 2003, Nephron Clinical Practice.

[47]  M. Soto,et al.  Familial collapsing glomerulopathy: clinical, pathological and immunogenetic features. , 2003, Kidney international.

[48]  V. D’Agati,et al.  Pathologic classification of focal segmental glomerulosclerosis. , 2003, Seminars in nephrology.

[49]  L. Tomlinson,et al.  Acute cytomegalovirus infection complicated by collapsing glomerulopathy. , 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[50]  R. Gerszten,et al.  Mice deficient in α-actinin-4 have severe glomerular disease , 2003 .

[51]  R. Gerszten,et al.  Mice deficient in alpha-actinin-4 have severe glomerular disease. , 2003, The Journal of clinical investigation.

[52]  R. Kalluri,et al.  Induction of B7-1 in podocytes is associated with nephrotic syndrome. , 2004, The Journal of clinical investigation.

[53]  Thomas Benzing,et al.  Signaling at the slit diaphragm. , 2004, Journal of the American Society of Nephrology : JASN.

[54]  David W. Williamson,et al.  Polymorphisms at positions -22 and -348 in the promoter of the BAT1 gene affect transcription and the binding of nuclear factors. , 2004, Human Molecular Genetics.

[55]  V. D’Agati,et al.  Glomerular tip lesion: a distinct entity within the minimal change disease/focal segmental glomerulosclerosis spectrum. , 2004, Kidney international.

[56]  T. Aigner,et al.  Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. , 2004, Human molecular genetics.

[57]  N. Burton,et al.  CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. , 2004, Blood.

[58]  P. Klotman,et al.  Sidekick-1 is upregulated in glomeruli in HIV-associated nephropathy. , 2004, Journal of the American Society of Nephrology : JASN.

[59]  Agnes B Fogo,et al.  Pathologic classification of focal segmental glomerulosclerosis: a working proposal. , 2004, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[60]  L. Holzman,et al.  Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. , 2005, Journal of the American Society of Nephrology : JASN.

[61]  D. Adu,et al.  Evolution of nephrotic-associated focal segmental glomerulosclerosis and relation to the glomerular tip lesion. , 2005, Kidney international.

[62]  J. A. van der Laak,et al.  The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. , 2005, Kidney international.

[63]  M. Pericak-Vance,et al.  A Mutation in the TRPC6 Cation Channel Causes Familial Focal Segmental Glomerulosclerosis , 2005, Science.

[64]  I. Pastan,et al.  Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. , 2005, Journal of the American Society of Nephrology : JASN.

[65]  S. Shankland,et al.  Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. , 2005, Journal of the American Society of Nephrology : JASN.

[66]  S. Harper,et al.  Three-dimensional reconstruction of glomeruli by electron microscopy reveals a distinct restrictive urinary subpodocyte space. , 2005, Journal of the American Society of Nephrology : JASN.

[67]  I. Pastan,et al.  Permanent Genetic Tagging of Podocytes: Fate of Injured Podocytes in a Mouse Model of Glomerular Sclerosis Materials and Methods Animal Experiments , 2022 .

[68]  T. Matsusaka,et al.  Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis , 2005, Current opinion in nephrology and hypertension.

[69]  Tony Pawson,et al.  Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes , 2006, Nature.

[70]  D. Stolz,et al.  Essential role of integrin-linked kinase in podocyte biology: Bridging the integrin and slit diaphragm signaling. , 2006, Journal of the American Society of Nephrology : JASN.

[71]  R J Falk,et al.  Clinical and pathologic characteristics of focal segmental glomerulosclerosis pathologic variants. , 2006, Kidney international.

[72]  B. Smeets,et al.  Lessons from studies on focal segmental glomerulosclerosis: an important role for parietal epithelial cells? , 2006, The Journal of pathology.

[73]  Patrick Bruneval,et al.  Parietal podocytes in normal human glomeruli. , 2006, Journal of the American Society of Nephrology : JASN.

[74]  A. Shaw,et al.  Proteinuria precedes podocyte abnormalities inLamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. , 2006, The Journal of clinical investigation.

[75]  A. Sonnenberg,et al.  Kidney failure in mice lacking the tetraspanin CD151 , 2006, The Journal of cell biology.

[76]  M. Carini,et al.  Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. , 2006, Journal of the American Society of Nephrology : JASN.

[77]  S. Shankland,et al.  Glial cell line-derived neurotrophic factor and its receptor ret is a novel ligand-receptor complex critical for survival response during podocyte injury. , 2006, Journal of the American Society of Nephrology : JASN.

[78]  Peter Nürnberg,et al.  Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible , 2006, Nature Genetics.

[79]  M. Saleem,et al.  Direct effects of dexamethasone on human podocytes. , 2006, Kidney international.

[80]  K. Endlich,et al.  Podocytes are sensitive to fluid shear stress in vitro. , 2006, American journal of physiology. Renal physiology.

[81]  L. Holzman,et al.  Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. , 2006, The Journal of clinical investigation.

[82]  V. D’Agati,et al.  Cellular focal segmental glomerulosclerosis: Clinical and pathologic features. , 2006, Kidney international.

[83]  R. Poulsom,et al.  Bone Marrow‐Derived Cells Contribute to Podocyte Regeneration and Amelioration of Renal Disease in a Mouse Model of Alport Syndrome , 2006, Stem cells.

[84]  J. Stéphan,et al.  Nephrotic syndrome associated with hemophagocytic syndrome. , 2006, Kidney international.

[85]  K. Chaisson,et al.  FSGS-associated α-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes , 2006 .

[86]  R. Kalluri,et al.  Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[87]  B. Smeets,et al.  Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. , 2006, Kidney international.

[88]  R. Craver,et al.  Presenting features and short-term outcome according to pathologic variant in childhood primary focal segmental glomerulosclerosis. , 2007, Clinical journal of the American Society of Nephrology : CJASN.

[89]  K. Schmid,et al.  Immigrating progenitor cells contribute to human podocyte turnover. , 2007, Kidney international.

[90]  S. Shankland,et al.  Darbepoetin alfa protects podocytes from apoptosis in vitro and in vivo. , 2007, Kidney international.

[91]  S. Shankland,et al.  Cell Cycle Regulatory Proteins in Podocyte Health and Disease , 2007, Nephron Experimental Nephrology.

[92]  M. Saleem,et al.  Statin-sensitive endocytosis of albumin by glomerular podocytes. , 2007, American journal of physiology. Renal physiology.

[93]  J. Hartwig,et al.  Disease-associated mutant α-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity , 2007, Proceedings of the National Academy of Sciences.

[94]  K. Asanuma,et al.  Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes , 2007, Proceedings of the National Academy of Sciences.

[95]  F. Eitner,et al.  Impaired glomerular maturation and lack of VEGF165b in Denys-Drash syndrome. , 2007, Journal of the American Society of Nephrology : JASN.

[96]  James R. Ashby,et al.  The homophilic adhesion molecule sidekick‐1 contributes to augmented podocyte aggregation in HIV‐associated nephropathy , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[97]  P. Tan,et al.  Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. , 2007, Journal of the American Society of Nephrology : JASN.

[98]  J. Wetzels,et al.  Glomerular involution in children with frequently relapsing minimal change nephrotic syndrome: an unrecognized form of glomerulosclerosis? , 2007, Kidney international.

[99]  M. Nangaku,et al.  Podocyte protection by darbepoetin: preservation of the cytoskeleton and nephrin expression. , 2007, Kidney international.

[100]  F. Bessho,et al.  Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance. , 2007, Journal of the American Society of Nephrology : JASN.

[101]  A. Fogo,et al.  Effects of Podocyte Injury on Glomerular Development , 2007, Pediatric Research.

[102]  A. Rudensky,et al.  Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. , 2007, The Journal of clinical investigation.

[103]  H. Baelde,et al.  Role of the VEGF-A Signaling Pathway in the Glomerulus: Evidence for Crosstalk between Components of the Glomerular Filtration Barrier , 2007, Nephron Physiology.

[104]  A. Pozzi,et al.  PPAR-γ agonist protects podocytes from injury , 2007 .

[105]  B. Galeano,et al.  Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. , 2007, The Journal of clinical investigation.

[106]  J. Floege,et al.  Podocyte Damage Resulting in Podocyturia: A Potential Diagnostic Marker to Assess Glomerular Disease Activity , 2007, Nephron Clinical Practice.

[107]  R. Burgess,et al.  Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. , 2007, The American journal of pathology.

[108]  D. Ingber,et al.  α-Actinin-4 Is Required for Normal Podocyte Adhesion* , 2007, Journal of Biological Chemistry.

[109]  G. Borm,et al.  Pathological variants of focal segmental glomerulosclerosis in an adult Dutch population--epidemiology and outcome. , 2007, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[110]  Bethan E. Hoskins,et al.  Identification of BRAF as a new interactor of PLCε1, the protein mutated in nephrotic syndrome type 3 , 2008 .

[111]  M. Pericak-Vance,et al.  A Mutation in the TRPC 6 Cation Channel Causes Familial Focal Segmental Glomerulosclerosis , 2008 .