Study on creep-fatigue failure prediction methods for type 304 stainless steel

Abstract Creep-fatigue failure is one of the principal failure modes to be avoided in elevated-temperature components of liquid metal fast breeder reactor (LMFBR) plants. To prevent this failure during the plant life with sufficient confidence, accurate and reliable methods should be employed for evaluating creep-fatigue endurance. A number of creep-fatigue tests have been conduced to establish a reliable creep-fatigue design methodology applicable to LMFBR plants in the last two decades but the conditions of these tests are generally far from those expected in actual plants. For the purpose of studying the characteristics of various creep-fatigue life prediction methods in conditions closer to actual plant conditions, the authors initiated creep and creep-fatigue tests for type 304 austenitic stainless steel with a special emphasis on tests with longer durations than past tests. Interim results are summarized in this paper. Two representative life prediction methods, linear damage fraction rule and ductility exhaustion method, were then applied to these test conditions. It was found that both methods can predict the failure lives with reasonable accuracy. Some comparisons were made regarding the characteristics of these two methods.