3D plasmonic chiral colloids.

3D plasmonic chiral colloids are synthesized through deterministically grouping of two gold nanorod AuNRs on DNA origami. These nanorod crosses exhibit strong circular dichroism (CD) at optical frequencies which can be engineered through position tuning of the rods on the origami. Our experimental results agree qualitatively well with theoretical predictions.

[1]  Hao Yan,et al.  DNA directed self-assembly of anisotropic plasmonic nanostructures. , 2011, Journal of the American Chemical Society.

[2]  J Alexander Liddle,et al.  Quantum-dot fluorescence lifetime engineering with DNA origami constructs. , 2013, Angewandte Chemie.

[3]  Chad A. Mirkin,et al.  Programmed Materials Synthesis with DNA. , 1999, Chemical reviews.

[4]  Anne Condon,et al.  Designed DNA molecules: principles and applications of molecular nanotechnology , 2006, Nature Reviews Genetics.

[5]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[6]  Friedrich C. Simmel,et al.  DNA origami – art, science, and engineering , 2012 .

[7]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[8]  Christof M Niemeyer,et al.  Functionalization of DNA nanostructures with proteins. , 2011, Chemical Society reviews.

[9]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[10]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[11]  N. Seeman DNA in a material world , 2003, Nature.

[12]  Nadrian C Seeman,et al.  Structural DNA nanotechnology: growing along with Nano Letters. , 2010, Nano letters.

[13]  A. Govorov,et al.  Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[15]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[16]  Jong Bum Lee,et al.  Engineering DNA-based functional materials. , 2011, Chemical Society reviews.

[17]  Baoquan Ding,et al.  Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. , 2012, Journal of the American Chemical Society.

[18]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[19]  B. Draine,et al.  Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. , 2012, Optics express.

[20]  L. Liz‐Marzán,et al.  Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. , 2011, The journal of physical chemistry letters.

[21]  Lei Wang,et al.  Effect of DNA hairpin loops on the twist of planar DNA origami tiles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[22]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[23]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[24]  Baptiste Auguié,et al.  From Individual to Collective Chirality in Metal Nanoparticles* , 2011, Colloidal Synthesis of Plasmonic Nanometals.

[25]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[26]  Qiao Jiang,et al.  Three-dimensional plasmonic chiral tetramers assembled by DNA origami. , 2013, Nano letters.

[27]  Hui Zhang,et al.  Optical Properties of Chiral Plasmonic Tetramers: Circular Dichroism and Multipole Effects , 2013 .

[28]  Hao Yan,et al.  Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. , 2010, Nano letters.

[29]  Hao Yan,et al.  Robust DNA-functionalized core/shell quantum dots with fluorescent emission spanning from UV-vis to near-IR and compatible with DNA-directed self-assembly. , 2012, Journal of the American Chemical Society.

[30]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.

[31]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[32]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[33]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[34]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[35]  Hao Yan,et al.  DNA Gridiron Nanostructures Based on Four-Arm Junctions , 2013, Science.

[36]  Weihai Ni,et al.  Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. , 2013, Journal of the American Chemical Society.

[37]  Barbara Saccà,et al.  DNA origami: the art of folding DNA. , 2012, Angewandte Chemie.

[38]  Joseph M Slocik,et al.  Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. , 2010, Nano letters.

[39]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10) , 2000, astro-ph/0008151.

[40]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[41]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[42]  Kurt V Gothelf,et al.  DNA-programmed assembly of nanostructures. , 2005, Organic & biomolecular chemistry.