CANONICITY RESULTS OF SUBSTRUCTURAL AND LATTICE-BASED LOGICS
暂无分享,去创建一个
[1] A. Tarski,et al. Boolean Algebras with Operators. Part I , 1951 .
[2] Stanley Burris,et al. A course in universal algebra , 1981, Graduate texts in mathematics.
[3] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[4] Silvio Ghilardi,et al. Constructive Canonicity in Non-Classical Logics , 1997, Ann. Pure Appl. Log..
[5] M. Gehrke,et al. Bounded Lattice Expansions , 2001 .
[6] A. Tarski,et al. Boolean Algebras with Operators , 1952 .
[7] Yde Venema,et al. A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..
[8] Robert Goldblatt,et al. Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..
[9] Richard Routley,et al. Relevant Logics and Their Rivals: Part 1. The Basic Philosophical and Semantical Theory , 1988 .
[10] Brian A. Davey,et al. Introduction to Lattices and Order: Frontmatter , 2002 .
[11] Alasdair Urquhart,et al. Duality for algebras of relevant logics , 1996, Stud Logica.
[12] Valentin Goranko,et al. Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..
[13] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[14] Takahiro Seki,et al. A Sahlqvist Theorem for Relevant Modal Logics , 2003, Stud Logica.
[15] S. Lane. Categories for the Working Mathematician , 1971 .
[16] Hiroakira Ono,et al. Logics without the contraction rule , 1985, Journal of Symbolic Logic.
[17] M. de Rijke,et al. Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.
[18] Alessandra Palmigiano,et al. Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.
[19] Giovanni Sambin,et al. Topology and duality in modal logic , 1988, Ann. Pure Appl. Log..
[20] Kosta Dosen. Sequent-systems and groupoid models. II , 1989, Stud Logica.
[21] Garrett Birkhoff,et al. Lattice Theory Revised Edition , 1948 .
[22] Takahiro Seki. General Frames for Relevant Modal Logics , 2003, Notre Dame J. Formal Log..
[23] Kosta Dosen,et al. Sequent-systems and groupoid models. I , 1988, Stud Logica.
[24] S. Maclane,et al. Categories for the Working Mathematician , 1971 .
[25] Mai Gehrke,et al. Canonical extensions of double quasioperator algebras: An algebraic perspective on duality for certain algebras with binary operations , 2007 .
[26] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[27] Bjarni Jónsson,et al. On the canonicity of Sahlqvist identities , 1994, Stud Logica.
[28] Dov M. Gabbay,et al. Handbook of Philosophical Logic , 2002 .
[29] K. Fine. Some Connections Between Elementary and Modal Logic , 1975 .
[30] Mai Gehrke,et al. NON-CANONICITY OF MV-ALGEBRAS , 2002 .
[31] H. Ono,et al. Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .
[32] H. Ono. Substructural Logics and Residuated Lattices — an Introduction , 2003 .
[33] S. Kanger. Proceedings of the third Scandinavian Logic Symposium , 1975 .
[34] J. Michael Dunn,et al. Relevance Logic and Entailment , 1986 .
[35] A. Chagrov,et al. Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .
[36] Dov M. Gabbay,et al. Handbook of the history of logic , 2004 .
[37] Giovanni Sambin,et al. A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.