CANONICITY RESULTS OF SUBSTRUCTURAL AND LATTICE-BASED LOGICS

In this paper, we extend the canonicity methodology in Ghilardi & Meloni (1997) to arbitrary lattice expansions, and syntactically describe canonical inequalities for lattice expansions consisting of -join preserving operations, -meet preserving operations, -additive operations, -multiplicative operations, adjoint pairs, and constants. This approach gives us a uniform account of canonicity for substructural and lattice-based logics. Our method not only covers existing results, but also systematically accounts for many canonical inequalities containing nonsmooth additive and multiplicative uniform operations. Furthermore, we compare our technique with the approach in Dunn et al. (2005) and Gehrke et al. (2005). §

[1]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[2]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[3]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[4]  Silvio Ghilardi,et al.  Constructive Canonicity in Non-Classical Logics , 1997, Ann. Pure Appl. Log..

[5]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[6]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[7]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[8]  Robert Goldblatt,et al.  Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..

[9]  Richard Routley,et al.  Relevant Logics and Their Rivals: Part 1. The Basic Philosophical and Semantical Theory , 1988 .

[10]  Brian A. Davey,et al.  Introduction to Lattices and Order: Frontmatter , 2002 .

[11]  Alasdair Urquhart,et al.  Duality for algebras of relevant logics , 1996, Stud Logica.

[12]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[13]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[14]  Takahiro Seki,et al.  A Sahlqvist Theorem for Relevant Modal Logics , 2003, Stud Logica.

[15]  S. Lane Categories for the Working Mathematician , 1971 .

[16]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[17]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[18]  Alessandra Palmigiano,et al.  Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.

[19]  Giovanni Sambin,et al.  Topology and duality in modal logic , 1988, Ann. Pure Appl. Log..

[20]  Kosta Dosen Sequent-systems and groupoid models. II , 1989, Stud Logica.

[21]  Garrett Birkhoff,et al.  Lattice Theory Revised Edition , 1948 .

[22]  Takahiro Seki General Frames for Relevant Modal Logics , 2003, Notre Dame J. Formal Log..

[23]  Kosta Dosen,et al.  Sequent-systems and groupoid models. I , 1988, Stud Logica.

[24]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[25]  Mai Gehrke,et al.  Canonical extensions of double quasioperator algebras: An algebraic perspective on duality for certain algebras with binary operations , 2007 .

[26]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[27]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[28]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[29]  K. Fine Some Connections Between Elementary and Modal Logic , 1975 .

[30]  Mai Gehrke,et al.  NON-CANONICITY OF MV-ALGEBRAS , 2002 .

[31]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[32]  H. Ono Substructural Logics and Residuated Lattices — an Introduction , 2003 .

[33]  S. Kanger Proceedings of the third Scandinavian Logic Symposium , 1975 .

[34]  J. Michael Dunn,et al.  Relevance Logic and Entailment , 1986 .

[35]  A. Chagrov,et al.  Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .

[36]  Dov M. Gabbay,et al.  Handbook of the history of logic , 2004 .

[37]  Giovanni Sambin,et al.  A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.