Localized flow and heat transfer interactions in louvered-fin arrays

A detailed study of flow, heat transfer, and pressure drop for louvered fins is presented. Louver-by-louver mass transfer data are acquired for Reynolds numbers from 130 to 1400. Pressure-drop data are obtained using a low-speed wind tunnel and local flow structures are visualized using dye injection in a water tunnel. Particular attention is placed on the role of vortex shedding in heat transfer enhancement. In contrast to recent studies for similar offset-strip arrays, vortex shedding is found to have less impact in louvered-fin arrays. Several practical implications for heat exchanger design and analysis are discussed.

[1]  Ralph L. Webb,et al.  Prediction of Heat Transfer and Friction for the Louver Fin Geometry , 1992 .

[2]  J. P. Hartnett,et al.  Advances in Heat Transfer , 2003 .

[3]  T. A. Cowell,et al.  Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces , 1988 .

[4]  S. Balachandar,et al.  Heat transfer enhancement mechanisms in inline and staggered parallel-plate fin heat exchangers , 1997 .

[5]  M. Heikal,et al.  Flow and heat transfer in compact louvered fin surfaces , 1995 .

[6]  R. J. Goldstein,et al.  A review of mass transfer measurements using naphthalene sublimation , 1995 .

[7]  Chi-Chuan Wang,et al.  A generalized heat transfer correlation for Iouver fin geometry , 1997 .

[8]  N. C. Dejong,et al.  An Experimental Study of Flow and Heat Transfer in Offset Strip and Louvered-Fin Heat Exchangers , 1995 .

[9]  N. C. Dejong,et al.  An experimental study of flow and heat transfer in parallel-plate arrays: Local, row-by-row and surface average behavior , 1997 .

[10]  Hiroshi Aoki,et al.  An experimental study of the local heat transfer characteristics in automotive louvered fins , 1989 .

[11]  C. J. Davenport Heat Transfer and Flow Friction Characteristics of Louvred Heat Exchanger Surfaces , 1981 .

[12]  Karen A. Thole,et al.  Experimental design for flowfield studies of louvered fins , 1998 .

[13]  R. Shah,et al.  Handbook of single-phase convective heat transfer , 1987 .

[14]  Ralph L. Webb,et al.  How structure in the louvered fin heat exchanger geometry , 1991 .

[15]  Morgan Heikal,et al.  MEASUREMENTS OF LOCAL VELOCITY AND TURBULENCE LEVELS IN ARRAYS OF LOUVRED PLATE FINS , 1990 .

[16]  Chi-Chuan Wang,et al.  Air Side Performance of Brazed Aluminum Heat Exchangers , 1996 .

[17]  Ralph L. Webb,et al.  Rationally Based Heat Transfer and Friction Correlations for the Louver Fin Geometry , 1994 .

[18]  P. Mendes,et al.  The naphthalene sublimation technique , 1991 .

[19]  E. Sparrow,et al.  Measurements of heat transfer and pressure drop for an array of staggered plates aligned parallel to an air flow , 1980 .

[20]  Hiroshi Aoki,et al.  Numerical Analysis on Two-Dimensional Flow and Heat Transfer of Louvered Fins Using Overlaid Grids , 1990 .

[21]  A numerical study of flow and heat transfer in compact heat exchangers , 1996 .

[22]  Danesh K. Tafti,et al.  Flow transition in a multilouvered fin array , 2000 .

[23]  K. D. Bellows Flow Visualization of Louvered-Fin Heat Exchangers , 1997 .

[24]  D. Tafti,et al.  Classification and effects of thermal wakes on heat transfer in multilouvered fins , 2001 .

[25]  Karen A. Thole,et al.  Entry region of louvered fin heat exchangers , 1999 .

[26]  S. J. Kline,et al.  Describing Uncertainties in Single-Sample Experiments , 1953 .

[27]  D. Tafti,et al.  Geometry effects on flow transition in multilouvered fins – onset, propagation, and characteristic frequencies , 2001 .

[28]  Naim Afgan,et al.  Heat Exchangers Theory Amp Practice , 1983 .