On the neuronal basis for multisensory convergence: a brief overview.

For multisensory stimulation to effect perceptual and behavioral responses, information from the different sensory systems must converge on individual neurons. A great deal is already known regarding processing within the separate sensory systems, as well as about many of the integrative and perceptual/behavioral effects of multisensory processing. However, virtually nothing is known about the functional architecture that underlies multisensory convergence even though it is an integral step to this processing sequence. This paper seeks to summarize the findings pertinent to multisensory convergence, and to initiate the identification of specific convergence patterns that may underlie different multisensory perceptual and behavioral effects.

[1]  J. C. Middlebrooks,et al.  A neural code for auditory space in the cat's superior colliculus , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  C. Gross,et al.  Visuospatial properties of ventral premotor cortex. , 1997, Journal of neurophysiology.

[3]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[4]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[5]  Franco Lepore,et al.  Sensory interactions in the anterior ectosylvian cortex of cats , 2004, Experimental Brain Research.

[6]  M S Loop,et al.  Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes. , 1978, Science.

[7]  G. V. Simpson,et al.  Parieto‐occipital ∼1 0Hz activity reflects anticipatory state of visual attention mechanisms , 1998 .

[8]  B. Stein,et al.  Somatotopic component of the multisensory map in the deep laminae of the cat superior colliculus , 1991, The Journal of comparative neurology.

[9]  F. Pavani,et al.  Left tactile extinction following visual stimulation of a rubber hand. , 2000, Brain : a journal of neurology.

[10]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[11]  Lawrence G. McDade,et al.  Behavioral Indices of Multisensory Integration: Orientation to Visual Cues is Affected by Auditory Stimuli , 1989, Journal of Cognitive Neuroscience.

[12]  H. R. Clemo,et al.  Organization of a fourth somatosensory area of cortex in cat. , 1983, Journal of neurophysiology.

[13]  T. Hicks,et al.  Modality specificity of neuronal responses within the cat's insula. , 1988, Journal of neurophysiology.

[14]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[15]  H. R. Clemo,et al.  Auditory cortical projection from the anterior ectosylvian sulcus (Field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. , 1989, The Journal of comparative neurology.

[16]  Richard J. Salvi,et al.  GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. , 2000, Neuroreport.

[17]  R. Hari,et al.  Seeing speech: visual information from lip movements modifies activity in the human auditory cortex , 1991, Neuroscience Letters.

[18]  D. Irvine,et al.  Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: implications for auditory spatial representation. , 1985, Journal of neurophysiology.

[19]  T. Salt,et al.  Corticofugal influences on visual responses in cat superior colliculus: The role of NMDA receptors , 1996, Visual Neuroscience.

[20]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[21]  Avi Pfeffer,et al.  INFLUENCE OF , 2014 .

[22]  L. Benevento,et al.  Auditory-visual interaction in cat orbital-insular cortex , 1977, Neuroscience Letters.

[23]  M A Meredith,et al.  The visuotopic component of the multisensory map in the deep laminae of the cat superior colliculus , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  J. K. Harting,et al.  Cortical somatosensory and trigeminal inputs to the cat superior colliculus: Light and electron microscopic analyses , 1997, The Journal of comparative neurology.

[25]  J. K. Harting,et al.  The Mammalian Superior Colliculus: Studies of Its Morphology and Connections , 1984 .

[26]  W. Jiang,et al.  Two cortical areas mediate multisensory integration in superior colliculus neurons. , 2001, Journal of neurophysiology.

[27]  B. Stein,et al.  Spatial determinants of multisensory integration in cat superior colliculus neurons. , 1996, Journal of neurophysiology.

[28]  M. Wallace,et al.  Integration of multiple sensory modalities in cat cortex , 2004, Experimental Brain Research.

[29]  Colin Blakemore,et al.  Functional organization in the superior colliculus of the golden hamster , 1976, The Journal of comparative neurology.

[30]  A. L. Berman Overlap of somatic and auditory cortical response fields in anterior ectosylvian gyrus of cat. , 1961, Journal of neurophysiology.

[31]  T. Hicks,et al.  The visual insular cortex of the cat: organization, properties and modality specificity. , 1988, Progress in brain research.

[32]  D. Hubel,et al.  Topography of visual and somatosensory projections to mouse superior colliculus. , 1976, Journal of neurophysiology.

[33]  A. S. Ramoa,et al.  Intrinsic circuitry of the superior colliculus: pharmacophysiological identification of horizontally oriented inhibitory interneurons. , 1998, Journal of neurophysiology.

[34]  C. Schroeder,et al.  Somatosensory input to auditory association cortex in the macaque monkey. , 2001, Journal of neurophysiology.

[35]  B. Stein,et al.  Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  Giuseppe di Pellegrino,et al.  Neuropsychological Evidence of an Integrated Visuotactile Representation of Peripersonal Space in Humans , 1998, Journal of Cognitive Neuroscience.

[37]  F. Ebner,et al.  Intracortical processes regulating the integration of sensory information. , 1990, Progress in brain research.

[38]  J. Wepsic,et al.  Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. , 1966, Experimental neurology.

[39]  D Guitton,et al.  Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. I. Identification, localization, and effects of behavior on sensory responses. , 1991, Journal of neurophysiology.

[40]  M. Alex Meredith,et al.  Neurons and behavior: the same rules of multisensory integration apply , 1988, Brain Research.

[41]  S. Hillyard,et al.  Intra-modal and cross-modal spatial attention to auditory and visual stimuli. An event-related brain potential study. , 1999, Brain research. Cognitive brain research.

[42]  B E Stein,et al.  Relationship between visual and tactile representations in cat superior colliculus. , 1976, Journal of neurophysiology.

[43]  M Mishkin,et al.  Amygdalectomy impairs crossmodal association in monkeys. , 1985, Science.

[44]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[45]  L. Chalupa,et al.  Responses of visual, somatosensory, and auditory neurones in the golden hamster's superior colliculus , 1977, The Journal of physiology.

[46]  C D Gilbert,et al.  Circuitry, architecture, and functional dynamics of visual cortex. , 1993, Cerebral cortex.

[47]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[48]  M T Wallace,et al.  Cross-modal synthesis in the midbrain depends on input from cortex. , 1994, Journal of neurophysiology.

[49]  Conclusions , 1989 .

[50]  J. Paillard Brain and space , 1991 .

[51]  H. Vanegas,et al.  Comparative neurology of the optic tectum , 1984 .

[52]  A. L. Berman Interaction of cortical responses to somatic and auditory stimuli in anterior ectosylvian gyrus of cat. , 1961, Journal of neurophysiology.

[53]  C. Gross,et al.  A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields , 1993, Experimental Brain Research.

[54]  A R Palmer,et al.  Cells responsive to free‐field auditory stimuli in guinea‐pig superior colliculus: distribution and response properties. , 1983, The Journal of physiology.

[55]  D. Munoz,et al.  Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. , 1998, Journal of neurophysiology.

[56]  M. Wallace,et al.  Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. , 1993, Journal of neurophysiology.

[57]  M T Wallace,et al.  Mechanisms of within- and cross-modality suppression in the superior colliculus. , 1997, Journal of neurophysiology.

[58]  Andreas Hess,et al.  Functional mapping of transsynaptic effects of local manipulation of inhibition in gerbil auditory cortex , 1999, Brain Research.

[59]  Mark T. Wallace,et al.  Chapter 8 The visually responsive neuron and beyond: multisensory integration in cat and monkey , 1993 .

[60]  K E Binns,et al.  Importance of NMDA receptors for multimodal integration in the deep layers of the cat superior colliculus. , 1996, Journal of neurophysiology.

[61]  M. Wallace,et al.  Representation and integration of multiple sensory inputs in primate superior colliculus. , 1996, Journal of neurophysiology.

[62]  M. Tanaka,et al.  Coding of modified body schema during tool use by macaque postcentral neurones. , 1996, Neuroreport.

[63]  H. R. Clemo,et al.  Somatosensory cortex: a ‘new’ somatotopic representation , 1982, Brain Research.