A time series model for Kt with application to global synthetic weather generation

Abstract This article describes a general mathematical procedure for generating synthetic daily solar irradiation values. The procedure should be useful for simulating solar energy systems, requiring only the 12 monthly means ( K t ), as input. The procedure is based on a time series analysis of the daily Kt values, described in the article. It incorporates the well-known probability distribution function for Kt, by using a transformed variable, rather than Kt, as the fundamental random quantity.

[1]  R.H.B. Exell,et al.  A mathematical model for solar radiation in South-East Asia (Thailand) , 1981 .

[2]  S. Klein Calculation of monthly average insolation on tilted surfaces , 1976 .

[3]  Umberto Amato,et al.  Markov processes and Fourier analysis as a tool to describe and simulate daily solar irradiance , 1986 .

[4]  P. Lewis,et al.  Statistical Tests of Some Widely Used and Recently Proposed Uniform Random Number Generators , 1973 .

[5]  T. A. Bray,et al.  A Convenient Method for Generating Normal Variables , 1964 .

[6]  K. Hollands,et al.  A probability density function for the clearness index, with applications , 1983 .

[7]  Vincenzo Cena,et al.  Stochastic simulation of hourly global radiation sequences , 1979 .

[8]  D. J. Norris Correlation of solar radiation with clouds , 1968 .

[9]  P. A. W. Lewis,et al.  A Pseudo-Random Number Generator for the System/360 , 1969, IBM Syst. J..

[10]  R. Kashyap,et al.  Dynamic Stochastic Models from Empirical Data. , 1977 .

[11]  Ian F. Blake An Introduction to Applied Probability , 1981 .

[12]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[13]  Thong Ngee Goh,et al.  Stochastic modeling and forecasting of solar radiation data , 1977 .

[14]  P. Bendt,et al.  The frequency distribution of daily insolation values , 1981 .

[15]  John F. Hart,et al.  Computer Approximations , 1978 .

[16]  B. Brinkworth Autocorrelation and stochastic modelling of insolation sequences , 1977 .

[17]  Benjamin Y. H. Liu,et al.  The interrelationship and characteristic distribution of direct, diffuse and total solar radiation , 1960 .

[18]  A. I. McLeod,et al.  Advances in Box-Jenkins modeling: 1. Model construction , 1977 .

[19]  Automatic modelling and simulation of daily global solar radiation series , 1985 .

[20]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[21]  A.H.C. Van Paassen Indoor climate, outdoor climate and energy consumption , 1981 .

[22]  Donald Fraser,et al.  Probability and Statistics: Theory and Applications. , 1977 .

[23]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[24]  W. Beckman,et al.  A design procedure for solar heating systems , 1976 .

[25]  Peter W Lewis,et al.  Naval Postgraduate School Random Number Generator Package LLRANDOM , 1973 .

[26]  A. Atkinson,et al.  The Computer Generation of Beta, Gamma and Normal Random Variables , 1976 .