Transient microcavity sensor.

A transient and high sensitivity sensor based on high-Q microcavity is proposed and studied theoretically. There are two ways to realize the transient sensor: monitor the spectrum by fast scanning of probe laser frequency or monitor the transmitted light with fixed laser frequency. For both methods, the non-equilibrium response not only tells the ultrafast environment variance, but also enable higher sensitivity. As examples of application, the transient sensor for nanoparticles adhering and passing by the microcavity is studied. It's demonstrated that the transient sensor can sense coupling region, external linear variation together with the speed and the size of a nanoparticle. We believe that our researches will open a door to the fast dynamic sensing by microcavity.

[1]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[2]  Sailing He,et al.  Photonic crystal cavity on optical fiber facet for refractive index sensing. , 2012, Optics letters.

[3]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[4]  Ian M. White,et al.  Refractometric sensors based on microsphere resonators , 2005 .

[5]  Andrea M. Armani,et al.  Optothermal transport behavior in whispering gallery mode optical cavities , 2014 .

[6]  Vladimir S. Ilchenko,et al.  Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes , 1999 .

[7]  Ş. Özdemir,et al.  Optothermal spectroscopy of whispering gallery microresonators , 2011 .

[8]  Matthew R Foreman,et al.  Whispering gallery mode sensors. , 2015, Advances in optics and photonics.

[9]  Patrice Féron,et al.  Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers , 2008 .

[10]  Serge Rosenblum,et al.  All-optical routing of single photons by a one-atom switch controlled by a single photon , 2014, Science.

[11]  Ramgopal Madugani,et al.  Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light , 2015 .

[12]  Lan Yang,et al.  Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser , 2014, Proceedings of the National Academy of Sciences.

[13]  Denis Donlagic,et al.  All-fiber, long-active-length Fabry-Perot strain sensor. , 2011, Optics express.

[14]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[15]  Serge Rosenblum,et al.  Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators , 2015, Nature Communications.

[16]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[17]  Uriel Levy,et al.  Frequency locked micro disk resonator for real time and precise monitoring of refractive index. , 2012, Optics letters.

[18]  S. Nic Chormaic,et al.  Hollow core, whispering gallery resonator sensors , 2014, 1408.4338.

[19]  F. Sedlmeir,et al.  Crystalline MgF2 whispering gallery mode resonators for enhanced bulk index sensitivity , 2014 .

[20]  Judith Su,et al.  Label-Free Single Exosome Detection Using Frequency-Locked Microtoroid Optical Resonators , 2015 .

[21]  Lan Yang,et al.  Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices , 2012 .

[22]  Franco Nori,et al.  PT-symmetric phonon laser. , 2014, Physical review letters.

[23]  S. Arnold,et al.  Single virus detection from the reactive shift of a whispering-gallery mode , 2008, Proceedings of the National Academy of Sciences.

[24]  M. Mortier,et al.  Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification , 2014, Scientific Reports.

[25]  M. Boissinot,et al.  Dielectric resonating microspheres for biosensing: An optical approach to a biological problem , 2014 .

[26]  Federico Capasso,et al.  Whispering-gallery mode resonators for highly unidirectional laser action , 2010, Proceedings of the National Academy of Sciences.

[27]  Jonathan Ward,et al.  Quasi-droplet microbubbles for high resolution sensing applications. , 2014, Optics express.

[28]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[29]  K. Vahala,et al.  High sensitivity nanoparticle detection using optical microcavities , 2011, Proceedings of the National Academy of Sciences.

[30]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[31]  Scott A. Diddams,et al.  Microresonator based optical frequency combs | NIST , 2011 .

[32]  Yuliya Semenova,et al.  Packaged, high-Q, microsphere-resonator-based add-drop filter. , 2014, Optics letters.

[33]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[34]  S. Ozdemir,et al.  Detecting single viruses and nanoparticles using whispering gallery microlasers. , 2011, Nature nanotechnology.

[35]  Chun-Hua Dong,et al.  Optomechanical dark mode , 2013 .

[36]  Zheng-Fu Han,et al.  Taper-microsphere coupling with numerical calculation of coupled-mode theory , 2008 .

[37]  Florian Sedlmeir,et al.  High-Q MgF₂ whispering gallery mode resonators for refractometric sensing in aqueous environment. , 2014, Optics express.

[38]  Kebin Shi,et al.  Single nanoparticle detection using split-mode microcavity Raman lasers , 2014, Proceedings of the National Academy of Sciences.

[39]  Romeo Bernini,et al.  Flow through ring resonator sensing platform , 2015 .

[40]  Pietro Ferraro,et al.  Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere. , 2012, Optics letters.

[41]  Zheng-Fu Han,et al.  Packaged silica microsphere-taper coupling system for robust thermal sensing application. , 2011, Optics express.

[42]  Tindaro Ioppolo,et al.  Pressure tuning of whispering gallery mode resonators , 2007 .

[43]  I. Giles,et al.  Dynamic response of an all-fiber ring resonator. , 1988, Optics letters.

[44]  Daniele Romanini,et al.  Effects of laser phase noise on the injection of a high-finesse cavity. , 2002, Applied optics.

[45]  Zheng-Fu Han,et al.  Ringing phenomenon in silica microspheres , 2009 .

[46]  L J Wang,et al.  Sub-kHz lasing of a CaF₂ whispering gallery mode resonator stabilized fiber ring laser. , 2014, Optics express.

[47]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .