A multi-parametric programming approach for constrained dynamic programming problems

In this work, we present a new algorithm for solving complex multi-stage optimization problems involving hard constraints and uncertainties, based on dynamic and multi-parametric programming techniques. Each echelon of the dynamic programming procedure, typically employed in the context of multi-stage optimization models, is interpreted as a multi-parametric optimization problem, with the present states and future decision variables being the parameters, while the present decisions the corresponding optimization variables. This reformulation significantly reduces the dimension of the original problem, essentially to a set of lower dimensional multi-parametric programs, which are sequentially solved. Furthermore, the use of sensitivity analysis circumvents non-convexities that naturally arise in constrained dynamic programming problems. The potential application of the proposed novel framework to robust constrained optimal control is highlighted.

[1]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[2]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[3]  Christodoulos A. Floudas,et al.  A new robust optimization approach for scheduling under uncertainty: II. Uncertainty with known probability distribution , 2007, Comput. Chem. Eng..

[4]  E. Pistikopoulos,et al.  Multi-parametric programming : theory, algorithms and applications , 2007 .

[5]  Alberto Bemporad,et al.  Dynamic programming for constrained optimal control of discrete-time linear hybrid systems , 2005, Autom..

[6]  Efstratios N. Pistikopoulos,et al.  Global Optimization Issues in Multiparametric Continuous and Mixed-Integer Optimization Problems , 2004, J. Glob. Optim..

[7]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[8]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[9]  Krzysztof R. Apt,et al.  Principles of constraint programming , 2003 .

[10]  E. Pistikopoulos,et al.  A multiparametric programming approach for mixed-integer quadratic engineering problems , 2002 .

[11]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[12]  Christodoulos A. Floudas,et al.  A new robust optimization approach for scheduling under uncertainty: : I. Bounded uncertainty , 2004, Comput. Chem. Eng..

[13]  M. Morari,et al.  On-line optimization via off-line parametric optimization tools , 2000 .

[14]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[15]  L El Ghaoui,et al.  ROBUST SOLUTIONS TO LEAST-SQUARE PROBLEMS TO UNCERTAIN DATA MATRICES , 1997 .

[16]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[17]  James B. Rawlings,et al.  Tutorial: model predictive control technology , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[18]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[19]  Anthony V. Fiacco,et al.  Sensitivity analysis for nonlinear programming using penalty methods , 1976, Math. Program..

[20]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .