Uniform Elliptic Estimate for an Infinite Plate in Linear Elasticity

Abstract We present a new study of linear elasticity for an infinite three-dimensional plate of finite thickness Ω = ℝ2 × (−1, 1). We first characterize the kernel of the operator of elasticity as polynomials which can be build from the kernel of the classical Kirchhoff–Love model of plate. Using this characterization, we get optimal uniform elliptic estimates W k, p , C k, α on the solution as a function of the exterior forces. We also give an interior estimate.

[1]  A. Mielke Corrigendum “Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity” , 1990 .

[2]  Philippe Destuynder,et al.  Mathematical Analysis of Thin Plate Models , 1996 .

[3]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[4]  C. B. Morrey Second Order Elliptic Systems of Differential Equations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Campanato Equazioni ellittiche del IIo ordine e spazi $$\mathfrak{L}^{(2,\lambda )} $$ . , 1965 .

[6]  Ivo Babuška,et al.  On a dimensional reduction method. II. Some approximation-theoretic results , 1981 .

[7]  Alexander Mielke,et al.  On Saint-Venant's problem for an elastic strip , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .

[9]  L. Hörmander,et al.  The boundary problems of physical geodesy , 1976 .

[10]  Alexander Mielke,et al.  On the justification of plate theories in linear elasticity theory using exponential decay estimates , 1995 .

[11]  Monique Dauge,et al.  The Influence of Lateral Boundary Conditions on the Asymptotics in Thin Elastic Plates , 1999, SIAM J. Math. Anal..

[12]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[13]  Philippe G. Ciarlet,et al.  Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis , 1991 .

[14]  I. Babuska,et al.  On a dimensional reduction method. I. The optimal selection of basis functions , 1981 .

[15]  Vivette Girault,et al.  Weighted Sobolev spaces for Laplace's equation in Rn , 1994 .

[16]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[17]  A. Mielke Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity , 1988 .

[18]  R. Carter Lie Groups , 1970, Nature.

[19]  Sisto Baldo,et al.  Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity , 1994 .

[20]  Mariano Giaquinta,et al.  Introduction to Regularity Theory for Nonlinear Elliptic Systems , 1993 .

[21]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[22]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[23]  L. Evans MULTIPLE INTEGRALS IN THE CALCULUS OF VARIATIONS AND NONLINEAR ELLIPTIC SYSTEMS , 1984 .

[24]  Monique Dauge,et al.  Asymptotics of arbitrary order for a thin elastic clamped plate , 1996 .

[25]  Ph. Destuynder,et al.  Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité , 1981 .

[26]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[27]  L. Simon Schauder estimates by scaling , 1997 .

[28]  H. Walker,et al.  The null spaces of elliptic partial differential operators in Rn , 1973 .

[29]  Alexander Mielke,et al.  Reduction of PDEs on domains with several unbounded directions: A first step towards modulation equations , 1992 .