Hierarchical Self‐Assembly of Capsule‐Shaped Zirconium Coordination Cages with Quaternary Structure

Abstract Biological macromolecules exhibit emergent functions through hierarchical self‐assembly, a concept that is extended to design artificial supramolecular assemblies. Here, the first example of breaking the common parallel arrangement of capsule‐shaped zirconium coordination cages is reported by constructing the hierarchical porous framework ZrR‐1. ZrR‐1 adopts a quaternary structure resembling protein and contains 12‐connected chloride clusters, representing the highest connectivity for zirconium‐based cages reported thus far. Compared to the parallel framework ZrR‐2, ZrR‐1 demonstrated enhanced stability in acidic aqueous solutions and a tenfold increase in BET surface area (879 m2 g−1). ZrR‐1 also exhibits excellent proton conductivity, reaching 1.31 × 10−2 S·cm−1 at 353 K and 98% relative humidity, with a low activation energy of 0.143 eV. This finding provides insights into controlling the hierarchical self‐assembly of metal–organic cages to discover superstructures with emergent properties.

[1]  S. Dalgarno,et al.  Redox-Controlled Self-Assembly of Vanadium-Seamed Hexameric Pyrogallol[4]Arene Nanocapsules. , 2023, Journal of the American Chemical Society.

[2]  O. Yaghi,et al.  Decoding complex order in reticular frameworks , 2023, Science.

[3]  Zhangjing Zhang,et al.  Exploring Multifunctional Hydrogen-Bonded Organic Framework Materials. , 2022, Accounts of chemical research.

[4]  Andrew L. Ferguson,et al.  Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. , 2022, Chemical reviews.

[5]  Banglin Chen,et al.  Hydrogen-bonded organic frameworks: Chemistry and functions , 2022, Chem.

[6]  Dan Zhao,et al.  Zirconium Metal-Organic Cages: Synthesis and Applications. , 2022, Accounts of chemical research.

[7]  Jiyeon Kim,et al.  Topology-guided roadmap for reticular chemistry of metal-organic polyhedra , 2022, Chem.

[8]  A. Cooper,et al.  A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving , 2022, Nature Materials.

[9]  J. Atwood,et al.  Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules. , 2021, Accounts of chemical research.

[10]  M. Hong,et al.  Constructing π-Stacked Supramolecular Cage Based Hierarchical Self-Assemblies via π···π Stacking and Hydrogen Bonding. , 2021, Journal of the American Chemical Society.

[11]  Madhab C. Das,et al.  Superprotonic Conductivity of MOFs and Other Crystalline Platforms Beyond 10−1 S cm−1 , 2021, Advanced Functional Materials.

[12]  Jiyeon Kim,et al.  Multivariate Porous Platform Based on Metal-Organic Polyhedra with Controllable Functionality Assembly , 2021, SSRN Electronic Journal.

[13]  Qingfu Sun,et al.  Hexameric Lanthanide-Organic Capsules with Tertiary Structure and Emergent Functions. , 2021, Journal of the American Chemical Society.

[14]  J. Sessler,et al.  Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra. , 2021, Journal of the American Chemical Society.

[15]  P. Stang,et al.  Hierarchical Self-assembly of Discrete Metal-Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. , 2020, Angewandte Chemie.

[16]  Chen Lihua,et al.  Hierarchically porous materials and green chemistry—an interview with Ming-Yuan He , 2020 .

[17]  Dongyuan Zhao,et al.  Hierarchy: from nature to artificial , 2020, National science review.

[18]  J. Sessler,et al.  Double-layered supramolecular prisms self-assembled by geometrically non-equivalent tetratopic subunits. , 2020, Angewandte Chemie.

[19]  Wenjing Wang,et al.  Reticular Chemistry in Construction of Porous Organic Cages. , 2020, Journal of the American Chemical Society.

[20]  R. Clowes,et al.  3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes , 2020, Journal of the American Chemical Society.

[21]  S. Wuttke,et al.  Digital Reticular Chemistry , 2020, Chem.

[22]  Liang Wu,et al.  Hierarchically structured porous materials: synthesis strategies and applications in energy storage , 2020, National science review.

[23]  Daqiang Yuan,et al.  Stabilizing the Extrinsic Porosity in Metal–Organic Cages-Based Supramolecular Framework by In Situ Catalytic Polymerization , 2020 .

[24]  Yue‐Biao Zhang,et al.  Anisotropic reticular chemistry , 2020, Nature Reviews Materials.

[25]  Zhangjing Zhang,et al.  Hydrogen-Bonded Organic Frameworks as A Tunable Platform for Functional Materials. , 2020, Journal of the American Chemical Society.

[26]  C. Arthur,et al.  Structure of the human sodium leak channel NALCN , 2020, Nature.

[27]  D. Luo,et al.  DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. , 2020, Chemical reviews.

[28]  S. Wuttke,et al.  Standard Practices of Reticular Chemistry , 2020, ACS central science.

[29]  Xiaoyun Liu,et al.  Controlled Hierarchical Self-Assembly of Catenated Cages. , 2020, Journal of the American Chemical Society.

[30]  A. Stepanov,et al.  Superprotonic Conductivity in Metal-Organic Framework via Solvent-Free Coordinative Urea Insertion. , 2020, Journal of the American Chemical Society.

[31]  O. Yaghi Reticular Chemistry in All Dimensions , 2019, ACS central science.

[32]  Rebecca L. Greenaway,et al.  From Concept to Crystals via Prediction: Multi-Component Organic Cage Pots by Social Self-Sorting. , 2019, Angewandte Chemie.

[33]  J. F. Stoddart,et al.  Assembly of a Porous Supramolecular Polyknot from Rigid Trigonal Prismatic Building Blocks. , 2019, Journal of the American Chemical Society.

[34]  Stephen Z. D. Cheng,et al.  Breaking Parallel Orientation of Rods via Dendritic Architecture toward Diverse Supramolecular Structures. , 2019, Angewandte Chemie.

[35]  Craig S. Kaplan,et al.  An ultra-stable gold-coordinated protein cage displaying reversible assembly , 2019, Nature.

[36]  M. Eddaoudi,et al.  Achieving Superprotonic Conduction with a 2D Fluorinated Metal-Organic Framework. , 2018, Journal of the American Chemical Society.

[37]  Santanu Chand,et al.  Polycarboxylate-Templated Coordination Polymers: Role of Templates for Superprotonic Conductivities of up to 10-1  S cm-1. , 2018, Angewandte Chemie.

[38]  Shing Bo Peh,et al.  Process-Tracing Study on the Postassembly Modification of Highly Stable Zirconium Metal-Organic Cages. , 2018, Journal of the American Chemical Society.

[39]  Christopher M. Kane,et al.  Functional materials discovery using energy–structure–function maps , 2017, Nature.

[40]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[41]  Edward O. Pyzer-Knapp,et al.  Controlling the crystallization of porous organic cages: molecular analogs of isoreticular frameworks using shape-specific directing solvents. , 2014, Journal of the American Chemical Society.

[42]  Gang Xu,et al.  Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. , 2013, Journal of the American Chemical Society.

[43]  A. Cooper,et al.  Modular and predictable assembly of porous organic molecular crystals , 2011, Nature.

[44]  S. Chong,et al.  Reticular synthesis of porous molecular 1D nanotubes and 3D networks. , 2017, Nature chemistry.