A Convex Optimization-Based Dynamic Model Identification Package for the da Vinci Research Kit

The da Vinci Research Kit (dVRK) is a teleoperated surgical robotic system. For dynamic simulations and model-based control, the dynamic model of the dVRK is required. We present an open-source dynamic model identification package for the dVRK, capable of modeling the parallelograms, springs, counterweight, and tendon couplings, which are inherent to the dVRK. A convex optimization-based method is used to identify the dynamic parameters of the dVRK subject to physical consistency. Experimental results show the effectiveness of the modeling and the robustness of the package. Although this software package is originally developed for the dVRK, it is feasible to apply it on other similar robots.

[1]  Philippe Lemoine,et al.  OpenSYMORO: An open-source software package for symbolic modelling of robots , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[2]  Radian A Gondokaryono,et al.  Cooperative Object Manipulation with Force Tracking on the da Vinci Research Kit , 2018 .

[3]  Yoshihiko Nakamura,et al.  Dynamics computation of closed-link robot mechanisms with nonredundant and redundant actuators , 1989, IEEE Trans. Robotics Autom..

[4]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[5]  Wisama Khalil,et al.  On the identification of the inertial parameters of robots , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[6]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[7]  Jean-Claude Samin,et al.  Linearity of Multibody Systems with Respect to Barycentric Parameters: Dynamics and Identification Models Obtained by Symbolic Generation , 1989 .

[8]  Elena De Momi,et al.  Dynamic Modeling of the Da Vinci Research Kit Arm for the Estimation of Interaction Wrench , 2019, 2019 International Symposium on Medical Robotics (ISMR).

[9]  M. Gautier Numerical calculation of the base inertial parameters of robots , 1991, J. Field Robotics.

[10]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[11]  Bruno Siciliano,et al.  A V-REP Simulator for the da Vinci Research Kit Robotic Platform , 2018, 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob).

[12]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[13]  Peter Kazanzides,et al.  An open-source research kit for the da Vinci® Surgical System , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Alessandro De Luca,et al.  Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Rui Cortesão,et al.  Inertia Tensor Properties in Robot Dynamics Identification: A Linear Matrix Inequality Approach , 2019, IEEE/ASME Transactions on Mechatronics.

[16]  Martin L. Felis RBDL: an efficient rigid-body dynamics library using recursive algorithms , 2017, Auton. Robots.

[17]  Wisama Khalil,et al.  Dynamic Modeling of Robots using Recursive Newton-Euler Techniques , 2010, ICINCO.

[18]  Adrien Escande,et al.  Identification of fully physical consistent inertial parameters using optimization on manifolds , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  Florian Richter,et al.  Open-Sourced Reinforcement Learning Environments for Surgical Robotics , 2019, ArXiv.

[20]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[21]  Jörn Malzahn,et al.  FloBaRoID - A Software Package for the Identification of Robot Dynamics Parameters , 2017, RAAD.

[22]  Bruno Siciliano,et al.  Modelling and identification of the da Vinci Research Kit robotic arms , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Cristóvão Duarte Sousa SymPyBotics v1.0 , 2014 .

[24]  P. Dahl A Solid Friction Model , 1968 .

[25]  Fernando Reyes,et al.  Experimental evaluation of model-based controllers on a direct-drive robot arm , 2001 .

[26]  Koji Yoshida,et al.  Verification of the Positive Definiteness of the Inertial Matrix of Manipulators Using Base Inertial Parameters , 2000, Int. J. Robotics Res..

[27]  Emmanuel Wilson,et al.  External force estimation and implementation in robotically assisted minimally invasive surgery , 2017, The international journal of medical robotics + computer assisted surgery : MRCAS.

[28]  Jean-Jacques E. Slotine,et al.  Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution , 2017, IEEE Robotics and Automation Letters.

[29]  Rui Pedro Duarte Cortesão,et al.  Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach , 2014, Int. J. Robotics Res..