Numerical Computations with Infinite and Infinitesimal Numbers: Theory and Applications

A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this chapter. It is based on the principle “The part is less than the whole” introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework that is not related to non-standard analysis theories. The Infinity Computer working with numbers of a new kind is described (its simulator has already been realized). The concept of accuracy of mathematical languages and its importance for a number of theoretical and practical issues regarding computations is discussed. Numerous examples dealing with divergent series, infinite sets, probability, limits, fractals, etc. are given.

[1]  Vieri Benci,et al.  Numerosities of labelled sets: a new way of counting , 2003 .

[2]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[3]  N. M. Nagorny,et al.  The Theory of Algorithms , 1988 .

[4]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[5]  M. Yamaguti,et al.  Chaos and Fractals , 1987 .

[6]  Yaroslav D. Sergeyev,et al.  Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers , 2007 .

[7]  K. Knopp Theory and Application of Infinite Series , 1990 .

[8]  Bruce W. Rogers Consistency of the Continuum Hypothesis , 2005 .

[9]  Yaroslav D. Sergeyev,et al.  A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities , 2008, Informatica.

[10]  Yaroslav D. Sergeyev,et al.  On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function , 2011, 1203.4142.

[11]  Antanas Zilinskas,et al.  On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions , 2011, Appl. Math. Comput..

[12]  Yaroslav D. Sergeyev,et al.  Higher order numerical differentiation on the Infinity Computer , 2011, Optim. Lett..

[13]  Yaroslav D. Sergeyev Using Blinking Fractals for Mathematical Modeling of Processes of Growth in Biological Systems , 2011, Informatica.

[14]  Elemer E Rosinger Microscopes and Telescopes for Theoretical Physics: How Rich Locally and Large Globally is the Geometric Straight Line? , 2011 .

[15]  J. M. Child The Early Mathematical Manuscripts Of Leibniz , 1921, The Mathematical Gazette.

[16]  Renato De Leone,et al.  The use of grossone in Mathematical Programming and Operations Research , 2011, Appl. Math. Comput..

[17]  Yaroslav D. Sergeyev,et al.  Methodology of Numerical Computations with Infinities and Infinitesimals , 2012, ArXiv.

[18]  Alfredo Garro,et al.  Observability of Turing Machines: A Refinement of the Theory of Computation , 2010, Informatica.

[19]  Bolyai János Matematikai Társulat,et al.  Theory of algorithms , 1985 .

[20]  Anatoly A. Zhigljavsky,et al.  Computing sums of conditionally convergent and divergent series using the concept of grossone , 2012, Appl. Math. Comput..

[21]  P. Gordon Numerical Cognition Without Words: Evidence from Amazonia , 2004, Science.

[22]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[23]  Yaroslav D. Sergeyev,et al.  Mathematical foundations of the infinity computer , 2006, Ann. UMCS Informatica.

[24]  Maurice Margenstern Using grossone to count the number of elements of infinite sets and the connection with bijections , 2011, ArXiv.

[25]  Vaclav Smil,et al.  Book of numbers , 1996, Nature.

[26]  K. Gödel Consistency of the Continuum Hypothesis. (AM-3) , 1940 .

[27]  Yaroslav D. Sergeyev,et al.  Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge ☆ , 2009, 1203.3150.

[28]  Yaroslav D. Sergeyev,et al.  Counting systems and the First Hilbert problem , 2010, 1203.4141.

[29]  Yaroslav D. Sergeyev,et al.  Numerical computations and mathematical modelling with infinite and infinitesimal numbers , 2012, ArXiv.

[30]  S. Dehaene,et al.  Exact and Approximate Arithmetic in an Amazonian Indigene Group , 2004, Science.

[31]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[32]  Massimo Veltri,et al.  Usage of infinitesimals in the Menger's Sponge model of porosity , 2011, Appl. Math. Comput..

[33]  Roman G. Strongin,et al.  Multidimensional Parallel Algorithms , 2000 .

[34]  Yaroslav D. Sergeyev,et al.  Interpretation of percolation in terms of infinity computations , 2012, Appl. Math. Comput..

[35]  W. Luxemburg Non-Standard Analysis , 1977 .

[36]  M. Potter Orders of infinity , 2004 .

[37]  D. Diderot,et al.  Encyclopédie, ou, Dictionnaire raisonné des sciences, des arts et des métiers , 1963 .

[38]  Gabriele Lolli,et al.  Infinitesimals and infinites in the history of mathematics: A brief survey , 2012, Appl. Math. Comput..

[39]  C. J. Keyser Contributions to the Founding of the Theory of Transfinite Numbers , 1916 .

[40]  B. L. Whorf Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf , 1956 .

[41]  Yaroslav D. Sergeyev,et al.  Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains , 2009, 1203.4140.

[42]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[43]  Lonnie Hamm,et al.  GLOBAL OPTIMIZATION METHODS , 2002 .

[44]  Louis D'Alotto,et al.  Cellular automata using infinite computations , 2011, Appl. Math. Comput..

[45]  Donald A. Martin,et al.  Mathematical Problems. Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900 , 1979 .

[46]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[47]  Maurice Margenstern,et al.  An application of Grossone to the study of a family of tilings of the hyperbolic plane , 2011, Appl. Math. Comput..

[48]  George Sugihara,et al.  Fractals: A User's Guide for the Natural Sciences , 1993 .

[49]  K. Stern Selected Writings of Edward Sapir in Language, Culture, and Personality , 1951 .