Bayesian analysis of the generalized gamma distribution using non-informative priors

ABSTRACT The Generalized gamma (GG) distribution plays an important role in statistical analysis. For this distribution, we derive non-informative priors using formal rules, such as Jeffreys prior, maximal data information prior and reference priors. We have shown that these most popular formal rules with natural ordering of parameters, lead to priors with improper posteriors. This problem is overcome by considering a prior averaging approach discussed in Berger et al. [Overall objective priors. Bayesian Analysis. 2015;10(1):189–221]. The obtained hybrid Jeffreys-reference prior is invariant under one-to-one transformations and yields a proper posterior distribution. We obtained good frequentist properties of the proposed prior using a detailed simulation study. Finally, an analysis of the maximum annual discharge of the river Rhine at Lobith is presented.

[1]  E. W. Stacy,et al.  Parameter Estimation for a Generalized Gamma Distribution , 1965 .

[2]  Pedro L. Ramos,et al.  An Efficient, Closed-Form MAP Estimator for Nakagami- ${m}$ Fading Parameter , 2016, IEEE Communications Letters.

[3]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[4]  Khodabina Morteza,et al.  SOME PROPERTIES OF GENERALIZED GAMMA DISTRIBUTION , 2010 .

[5]  Alain Dussauchoy,et al.  Parameter estimation of the generalized gamma distribution , 2008, Math. Comput. Simul..

[6]  J. M. V. Noortwijk Bayes Estimates of Flood Quantiles using the Generalised Gamma Distribution , 2004 .

[7]  James O. Berger,et al.  Ordered group reference priors with application to the multinomial problem , 1992 .

[8]  Mohammad Ahsanullah,et al.  Bayesian Inference on the Generalized Gamma Distribution Based on Generalized Order Statistics , 2013, J. Stat. Theory Appl..

[9]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[10]  Jorge Alberto Achcar,et al.  Bayesian Inference for Two-Parameter Gamma Distribution Assuming Different Noninformative Priors , 2013 .

[11]  Ping-Huang Huang,et al.  ON NEW MOMENT ESTIMATION OF PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION USING IT’S CHARACTERIZATION , 2006 .

[12]  A. Marani,et al.  Statistical study of air pollutant concentrations via generalized gamma distributions. , 1986, Journal of the Air Pollution Control Association.

[13]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[14]  Heng-Chao Li,et al.  On the Empirical-Statistical Modeling of SAR Images With Generalized Gamma Distribution , 2011, IEEE Journal of Selected Topics in Signal Processing.

[15]  R. Tibshirani Noninformative priors for one parameter of many , 1989 .

[16]  L. M. M.-T. Theory of Probability , 1929, Nature.

[17]  James O. Berger,et al.  Overall Objective Priors , 2015, 1504.02689.

[18]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[19]  P. Northrop,et al.  Posterior propriety in Bayesian extreme value analyses using reference priors , 2015, 1505.04983.

[20]  Lee J. Bain,et al.  Inferential Procedures for the Generalized Gamma Distribution , 1970 .

[21]  J. Bernardo Reference Analysis , 2005 .

[22]  A. Tahai,et al.  A revealed preference study of management journals' direct influences , 1999 .

[23]  Haitao Chu,et al.  Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution , 2007, Statistics in medicine.

[24]  I. Chang,et al.  Non-informative priors in the generalized gamma stress–strength systems , 2011 .

[25]  R. Prentice A LOG GAMMA MODEL AND ITS MAXIMUM LIKELIHOOD ESTIMATION , 1974 .

[26]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[27]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[28]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.