‘Excess’ of primary cosmic ray electrons
暂无分享,去创建一个
T. Dong | Lei Feng | Yi-Zhong Fan | Siming Liu | Xiang Li | Zhaoqiang Shen | Jin Chang | Bo-Qiang Lu | Yizhong Fan | Z. Shen
[1] R. Sagdeev,et al. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. , 2014, Physical review letters.
[2] V. Poulin,et al. A new look at the cosmic ray positron fraction , 2014, 1410.3799.
[3] Q. Yuan,et al. Quantitative study of the AMS-02 electron/positron spectra: Implications for pulsars and dark matter properties , 2014, 1409.6248.
[4] R. Sagdeev,et al. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station , 2014 .
[5] R. Sagdeev,et al. High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.
[6] D. Grasso,et al. PAMELA and AMS-02 e + and e - spectra are reproduced by three-dimensional cosmic-ray modeling , 2013, 1311.5575.
[7] R. Cowsik. Comment on M. Aguilar et. al. AMS Collaboration, Phys. Rev. Lett. 100, 141102 (2013) , 2013 .
[8] Q. Yuan,et al. Pulsar interpretation for the AMS-02 result , 2013, 1304.4128.
[9] I. Masina,et al. Hints of a Charge Asymmetry in the Electron and Positron Cosmic-Ray Excesses , 2013, 1304.2800.
[10] Q. Yuan,et al. Reconcile the AMS-02 positron fraction and Fermi-LAT/HESS total e(+/-) spectra by the primary electron spectrum hardening , 2013, 1304.2687.
[11] D. Hooper,et al. Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS , 2013, 1304.1840.
[12] S. Profumo,et al. PROBING THE PULSAR ORIGIN OF THE ANOMALOUS POSITRON FRACTION WITH AMS-02 AND ATMOSPHERIC CHERENKOV TELESCOPES , 2013, 1304.1791.
[13] Guo-ming Chen,et al. Implications of the AMS-02 positron fraction in cosmic rays , 2013, 1304.1482.
[14] T. Dong,et al. AMS-02 positron excess: New bounds on dark matter models and hint for primary electron spectrum hardening ✩ , 2013, 1303.0530.
[15] E. Seo,et al. SPECTRA OF COSMIC-RAY PROTONS AND HELIUM PRODUCED IN SUPERNOVA REMNANTS , 2012, 1212.0381.
[16] Q. Yuan,et al. PAMELA/Fermi-LAT electron cosmic ray spectrum at ∼100 GeV: Implication for dark matter annihilation signal in accordance with the 130 GeV γ-ray line , 2012, 1206.4758.
[17] J. Chiang,et al. FERMI-LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM , 2012 .
[18] F. Jeschke. Dracula on Rails: The Pressburgerbahn Between Imperial Space and National Body, 1867–1935 , 2012 .
[19] T Glanzman,et al. Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. , 2011, Physical review letters.
[20] G. Jóhannesson,et al. TESTING THE ORIGIN OF HIGH-ENERGY COSMIC RAYS , 2011, 1108.1023.
[21] Q. Yuan,et al. Cosmic ray spectral hardening due to dispersion in the source injection spectra , 2011, 1104.3357.
[22] V. Malvezzi,et al. PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra , 2011, Science.
[23] G. Bignami,et al. DISCOVERY OF A FAINT X-RAY COUNTERPART AND A PARSEC-LONG X-RAY TAIL FOR THE MIDDLE-AGED, γ-RAY-ONLY PULSAR PSR J0357+3205 , 2011, 1102.3278.
[24] R. Trotta,et al. CONSTRAINTS ON COSMIC-RAY PROPAGATION MODELS FROM A GLOBAL BAYESIAN ANALYSIS , 2010, 1011.0037.
[25] Bing Zhang,et al. $e^\pm$ Excesses in the Cosmic Ray Spectrum and Possible Interpretations , 2010, 1008.4646.
[26] J. T. Childers,et al. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA , 2010, 1004.1123.
[27] P. Panci,et al. Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi , 2009, 0912.0663.
[28] T. Piran,et al. Inhomogeneity in cosmic ray sources as the origin of the electron spectrum and the PAMELA anomaly. , 2009, Physical review letters.
[29] Lars Bergström,et al. Dark matter interpretation of recent electron and positron data. , 2009, Physical review letters.
[30] et al,et al. Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. , 2009, 0905.0105.
[31] G. C. Barbarino,et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.
[32] P. Blasi. Origin of the positron excess in cosmic rays. , 2009, Physical review letters.
[33] D. Malyshev,et al. Pulsars versus dark matter interpretation of ATIC/PAMELA , 2009, 0903.1310.
[34] W. Blair,et al. FAR ULTRAVIOLET SPECTROSCOPIC EXPLORER OBSERVATIONS OF KPD 2055+3111, A STAR BEHIND THE CYGNUS LOOP , 2009 .
[35] T. Piran,et al. Inhomogeneity in the Supernova Remnant Distribution as the Origin of the PAMELA Anomaly , 2009, 0902.0376.
[36] D. Hooper,et al. The PAMELA and ATIC Signals From Kaluza-Klein Dark Matter , 2009, 0902.0593.
[37] S. Profumo. Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars , 2008, 0812.4457.
[38] J. W. Watts,et al. An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.
[39] Q. Yuan,et al. PAMELA data and leptonically decaying dark matter , 2008, 0811.0176.
[40] G. C. Barbarino,et al. Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.
[41] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[42] Douglas P. Finkbeiner,et al. A theory of dark matter , 2008, 0810.0713.
[43] O. Kargaltsev,et al. Pulsar Wind Nebulae in the Chandra Era , 2008, 0801.2602.
[44] A. Ibarra,et al. Gamma-ray spectrum from gravitino dark matter decay. , 2007, Physical review letters.
[45] A. Strong,et al. Cosmic-Ray Propagation and Interactions in the Galaxy , 2007, astro-ph/0701517.
[46] J. Edelstein,et al. Diffuse Far-Ultraviolet Observations of the Lupus Loop Region , 2006, astro-ph/0604454.
[47] N. V. Sokolskaya,et al. Three component model of cosmic ray spectra from 10 GeV to 100 PeV , 2006, astro-ph/0601475.
[48] Nobuyuki Kawai,et al. Subaru optical observations of the two middle-aged pulsars PSR B0656+14 and Geminga , 2005, astro-ph/0511311.
[49] A. Strong,et al. Dissipation of Magnetohydrodynamic Waves on Energetic Particles: Impact on Interstellar Turbulence and Cosmic-Ray Transport , 2005, astro-ph/0510335.
[50] K. Yoshida,et al. The Most Likely Sources of High-Energy Cosmic-Ray Electrons in Supernova Remnants , 2003, astro-ph/0308470.
[51] L. Zhang,et al. Cosmic-ray positrons from mature gamma-ray pulsars , 2001 .
[52] A. Strong,et al. Propagation of Cosmic-Ray Nucleons in the Galaxy , 1998, astro-ph/9807150.
[53] C. Shen. Pulsars and very high-energy cosmic-ray electrons , 1970 .
[54] N. A. Dobrotin,et al. INTERNATIONAL COSMIC RAY CONFERENCE , 1960 .
[55] P. Lipari,et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .
[56] J. Chiang,et al. Measurement of the Cosmic Ray e + + e − spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope , 2009 .
[57] The 28th International Cosmic Ray Conference 1 , 2003 .