‘Excess’ of primary cosmic ray electrons

[1]  R. Sagdeev,et al.  Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. , 2014, Physical review letters.

[2]  V. Poulin,et al.  A new look at the cosmic ray positron fraction , 2014, 1410.3799.

[3]  Q. Yuan,et al.  Quantitative study of the AMS-02 electron/positron spectra: Implications for pulsars and dark matter properties , 2014, 1409.6248.

[4]  R. Sagdeev,et al.  Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station , 2014 .

[5]  R. Sagdeev,et al.  High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[6]  D. Grasso,et al.  PAMELA and AMS-02 e + and e - spectra are reproduced by three-dimensional cosmic-ray modeling , 2013, 1311.5575.

[7]  R. Cowsik Comment on M. Aguilar et. al. AMS Collaboration, Phys. Rev. Lett. 100, 141102 (2013) , 2013 .

[8]  Q. Yuan,et al.  Pulsar interpretation for the AMS-02 result , 2013, 1304.4128.

[9]  I. Masina,et al.  Hints of a Charge Asymmetry in the Electron and Positron Cosmic-Ray Excesses , 2013, 1304.2800.

[10]  Q. Yuan,et al.  Reconcile the AMS-02 positron fraction and Fermi-LAT/HESS total e(+/-) spectra by the primary electron spectrum hardening , 2013, 1304.2687.

[11]  D. Hooper,et al.  Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS , 2013, 1304.1840.

[12]  S. Profumo,et al.  PROBING THE PULSAR ORIGIN OF THE ANOMALOUS POSITRON FRACTION WITH AMS-02 AND ATMOSPHERIC CHERENKOV TELESCOPES , 2013, 1304.1791.

[13]  Guo-ming Chen,et al.  Implications of the AMS-02 positron fraction in cosmic rays , 2013, 1304.1482.

[14]  T. Dong,et al.  AMS-02 positron excess: New bounds on dark matter models and hint for primary electron spectrum hardening ✩ , 2013, 1303.0530.

[15]  E. Seo,et al.  SPECTRA OF COSMIC-RAY PROTONS AND HELIUM PRODUCED IN SUPERNOVA REMNANTS , 2012, 1212.0381.

[16]  Q. Yuan,et al.  PAMELA/Fermi-LAT electron cosmic ray spectrum at ∼100 GeV: Implication for dark matter annihilation signal in accordance with the 130 GeV γ-ray line , 2012, 1206.4758.

[17]  J. Chiang,et al.  FERMI-LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM , 2012 .

[18]  F. Jeschke Dracula on Rails: The Pressburgerbahn Between Imperial Space and National Body, 1867–1935 , 2012 .

[19]  T Glanzman,et al.  Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. , 2011, Physical review letters.

[20]  G. Jóhannesson,et al.  TESTING THE ORIGIN OF HIGH-ENERGY COSMIC RAYS , 2011, 1108.1023.

[21]  Q. Yuan,et al.  Cosmic ray spectral hardening due to dispersion in the source injection spectra , 2011, 1104.3357.

[22]  V. Malvezzi,et al.  PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra , 2011, Science.

[23]  G. Bignami,et al.  DISCOVERY OF A FAINT X-RAY COUNTERPART AND A PARSEC-LONG X-RAY TAIL FOR THE MIDDLE-AGED, γ-RAY-ONLY PULSAR PSR J0357+3205 , 2011, 1102.3278.

[24]  R. Trotta,et al.  CONSTRAINTS ON COSMIC-RAY PROPAGATION MODELS FROM A GLOBAL BAYESIAN ANALYSIS , 2010, 1011.0037.

[25]  Bing Zhang,et al.  $e^\pm$ Excesses in the Cosmic Ray Spectrum and Possible Interpretations , 2010, 1008.4646.

[26]  J. T. Childers,et al.  DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA , 2010, 1004.1123.

[27]  P. Panci,et al.  Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi , 2009, 0912.0663.

[28]  T. Piran,et al.  Inhomogeneity in cosmic ray sources as the origin of the electron spectrum and the PAMELA anomaly. , 2009, Physical review letters.

[29]  Lars Bergström,et al.  Dark matter interpretation of recent electron and positron data. , 2009, Physical review letters.

[30]  et al,et al.  Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. , 2009, 0905.0105.

[31]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[32]  P. Blasi Origin of the positron excess in cosmic rays. , 2009, Physical review letters.

[33]  D. Malyshev,et al.  Pulsars versus dark matter interpretation of ATIC/PAMELA , 2009, 0903.1310.

[34]  W. Blair,et al.  FAR ULTRAVIOLET SPECTROSCOPIC EXPLORER OBSERVATIONS OF KPD 2055+3111, A STAR BEHIND THE CYGNUS LOOP , 2009 .

[35]  T. Piran,et al.  Inhomogeneity in the Supernova Remnant Distribution as the Origin of the PAMELA Anomaly , 2009, 0902.0376.

[36]  D. Hooper,et al.  The PAMELA and ATIC Signals From Kaluza-Klein Dark Matter , 2009, 0902.0593.

[37]  S. Profumo Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars , 2008, 0812.4457.

[38]  J. W. Watts,et al.  An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.

[39]  Q. Yuan,et al.  PAMELA data and leptonically decaying dark matter , 2008, 0811.0176.

[40]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[41]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[42]  Douglas P. Finkbeiner,et al.  A theory of dark matter , 2008, 0810.0713.

[43]  O. Kargaltsev,et al.  Pulsar Wind Nebulae in the Chandra Era , 2008, 0801.2602.

[44]  A. Ibarra,et al.  Gamma-ray spectrum from gravitino dark matter decay. , 2007, Physical review letters.

[45]  A. Strong,et al.  Cosmic-Ray Propagation and Interactions in the Galaxy , 2007, astro-ph/0701517.

[46]  J. Edelstein,et al.  Diffuse Far-Ultraviolet Observations of the Lupus Loop Region , 2006, astro-ph/0604454.

[47]  N. V. Sokolskaya,et al.  Three component model of cosmic ray spectra from 10 GeV to 100 PeV , 2006, astro-ph/0601475.

[48]  Nobuyuki Kawai,et al.  Subaru optical observations of the two middle-aged pulsars PSR B0656+14 and Geminga , 2005, astro-ph/0511311.

[49]  A. Strong,et al.  Dissipation of Magnetohydrodynamic Waves on Energetic Particles: Impact on Interstellar Turbulence and Cosmic-Ray Transport , 2005, astro-ph/0510335.

[50]  K. Yoshida,et al.  The Most Likely Sources of High-Energy Cosmic-Ray Electrons in Supernova Remnants , 2003, astro-ph/0308470.

[51]  L. Zhang,et al.  Cosmic-ray positrons from mature gamma-ray pulsars , 2001 .

[52]  A. Strong,et al.  Propagation of Cosmic-Ray Nucleons in the Galaxy , 1998, astro-ph/9807150.

[53]  C. Shen Pulsars and very high-energy cosmic-ray electrons , 1970 .

[54]  N. A. Dobrotin,et al.  INTERNATIONAL COSMIC RAY CONFERENCE , 1960 .

[55]  P. Lipari,et al.  First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .

[56]  J. Chiang,et al.  Measurement of the Cosmic Ray e + + e − spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope , 2009 .

[57]  The 28th International Cosmic Ray Conference 1 , 2003 .