THE EQUIVALENCE OF WEAK , STRONG AND COMPLETE CONVERGENCE IN Ll FOR KERNEL DENSITY ESTIMATES ' BY LUC DEVROYE McGill
暂无分享,去创建一个
[1] H. Scheffé. A Useful Convergence Theorem for Probability Distributions , 1947 .
[2] L. Kantorovich,et al. Functional analysis in normed spaces , 1952 .
[3] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[4] T. Broadbent. Measure and Integral , 1957, Nature.
[5] W. Hoeffding. Probability inequalities for sum of bounded random variables , 1963 .
[6] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[7] N. Glick. Sample-Based Classification Procedures Derived from Density Estimators , 1972 .
[8] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[9] Ned Glick,et al. Sample-based classification procedures related to empiric distributions , 1976, IEEE Trans. Inf. Theory.
[10] Saab Abou-Jaoudé. Conditions nécessaires et suffisantes de convergence L1 en probabilité de l'histogramme pour une densité , 1976 .
[11] Saab Abou-Jaoudé. Sur la convergence L1 et L∞ de l'estimateur de la partition aléatoire pour une densité , 1976 .
[12] E. Slud. Distribution Inequalities for the Binomial Law , 1977 .
[13] L. Devroye,et al. The $L_1$ Convergence of Kernel Density Estimates , 1979 .
[14] L. Devroye,et al. Distribution-Free Consistency Results in Nonparametric Discrimination and Regression Function Estimation , 1980 .
[15] C. Spiegelman,et al. Consistent Window Estimation in Nonparametric Regression , 1980 .
[16] L. Devroye,et al. On the L1 convergence of kernel estimators of regression functions with applications in discrimination , 1980 .