Chimera states and synchronization in magnetically driven SQUID metamaterials

Abstract One-dimensional arrays of Superconducting QUantum Interference Devices (SQUIDs) form magnetic metamaterials exhibiting extraordinary properties, including tunability, dynamic multistability, negative magnetic permeability, and broadband transparency. The SQUIDs in a metamaterial interact through non-local, magnetic dipole-dipole forces, that makes it possible for multiheaded chimera states and coexisting patterns, including solitary states, to appear. The spontaneous emergence of chimera states and the role of multistability is demonstrated numerically for a SQUID metamaterial driven by an alternating magnetic field. The spatial synchronization and temporal complexity are discussed and the parameter space for the global synchronization reveals the areas of coherence-incoherence transition. Given that both one- and two-dimensional SQUID metamaterials have been already fabricated and investigated in the lab, the presence of a chimera state could in principle be detected with presently available experimental set-ups.

[1]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[2]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[3]  Nick Lazarides,et al.  Multistability and self-organization in disordered SQUID metamaterials , 2013, 1304.1650.

[4]  C. Laing Chimeras in networks with purely local coupling. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Philipp Hövel,et al.  Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  M. Rosenblum,et al.  Partially integrable dynamics of hierarchical populations of coupled oscillators. , 2008, Physical review letters.

[7]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[8]  Eckehard Schöll,et al.  Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Chris G. Antonopoulos,et al.  Chimera-like States in Modular Neural Networks , 2015, Scientific Reports.

[10]  A V Ustinov,et al.  A one-dimensional tunable magnetic metamaterial. , 2013, Optics express.

[11]  Eckehard Schöll,et al.  Chimera death: symmetry breaking in dynamical networks. , 2014, Physical review letters.

[12]  Shiqun Li,et al.  Quantum left-handed metamaterial from superconducting quantum-interference devices , 2005 .

[13]  Philipp Hövel,et al.  Chimera states in population dynamics: Networks with fragmented and hierarchical connectivities. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Marthaler,et al.  Multistability and switching in a superconducting metamaterial , 2013, Nature Communications.

[15]  Hong,et al.  Periodic synchronization in a driven system of coupled oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Nikos Lazarides,et al.  rf superconducting quantum interference device metamaterials , 2007 .

[17]  M. Shanahan Metastable chimera states in community-structured oscillator networks. , 2009, Chaos.

[18]  Anastasios Bezerianos,et al.  Chimera states in a two–population network of coupled pendulum–like elements , 2014 .

[19]  N. Lazarides,et al.  Chimeras in SQUID metamaterials , 2014, 1408.6072.

[20]  Philipp Hövel,et al.  When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. , 2012, Physical review letters.

[21]  Iryna Omelchenko,et al.  Clustered chimera states in systems of type-I excitability , 2014 .

[22]  S. Olmi Chimera states in coupled Kuramoto oscillators with inertia. , 2015, Chaos.

[23]  Hyunsuk Hong,et al.  Inertia effects on periodic synchronization in a system of coupled oscillators , 1999 .

[24]  M. Rosenblum,et al.  Chimeralike states in an ensemble of globally coupled oscillators. , 2014, Physical review letters.

[25]  P. Hövel,et al.  Loss of coherence in dynamical networks: spatial chaos and chimera states. , 2011, Physical review letters.

[26]  Zach DeVito,et al.  Opt , 2017 .

[27]  S. Strogatz,et al.  Chimera states for coupled oscillators. , 2004, Physical review letters.

[28]  O. Hallatschek,et al.  Chimera states in mechanical oscillator networks , 2013, Proceedings of the National Academy of Sciences.

[29]  Peter A Tass,et al.  Chimera states: the natural link between coherence and incoherence. , 2008, Physical review letters.

[30]  C. Bick,et al.  Controlling chimeras , 2014, 1402.6363.

[31]  N. Lazarides,et al.  Intrinsic localization in nonlinear and superconducting metamaterials , 2012, Photonics Europe.

[32]  Jan Sieber,et al.  Controlling unstable chaos: stabilizing chimera states by feedback. , 2014, Physical review letters.

[33]  Eckehard Schöll,et al.  Tweezers for Chimeras in Small Networks. , 2016, Physical review letters.

[34]  Erik A Martens,et al.  Solvable model of spiral wave chimeras. , 2009, Physical review letters.

[35]  N. Lazarides,et al.  rf SQUID metamaterials , 2007 .

[36]  Zi-Gang Huang,et al.  Robustness of chimera states in complex dynamical systems , 2013, Scientific Reports.

[37]  Tomasz Kapitaniak,et al.  Chimera states on the route from coherence to rotating waves. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  R. Roy,et al.  Experimental observation of chimeras in coupled-map lattices , 2012, Nature Physics.

[39]  E. Ott,et al.  Long time evolution of phase oscillator systems. , 2009, Chaos.

[40]  Eckehard Schöll,et al.  Amplitude-phase coupling drives chimera states in globally coupled laser networks. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[42]  Philipp Hövel,et al.  Controlling chimera states: The influence of excitable units. , 2016, Physical review. E.

[43]  Yuri Maistrenko,et al.  Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Hilaire Bertrand Fotsin,et al.  Dynamics of Two Nonlinearly Coupled Oscillators , 1998 .

[45]  Steven M. Anlage,et al.  The physics and applications of superconducting metamaterials , 2010, 1004.3226.

[46]  Steven M. Anlage,et al.  Progress in superconducting metamaterials , 2014, 1403.6514.

[47]  Sergey V. Shitov,et al.  Low-loss tunable metamaterials using superconducting circuits with Josephson junctions , 2013, 1301.0440.

[48]  K. Showalter,et al.  Chimera and phase-cluster states in populations of coupled chemical oscillators , 2012, Nature Physics.

[49]  S. Chakraborty,et al.  Parametrically excited non-linearity in Van der Pol oscillator: Resonance, anti-resonance and switch , 2013 .

[50]  S. Strogatz,et al.  Solvable model for chimera states of coupled oscillators. , 2008, Physical review letters.

[51]  István Z. Kiss,et al.  Spatially Organized Dynamical States in Chemical Oscillator Networks: Synchronization, Dynamical Differentiation, and Chimera Patterns , 2013, PloS one.

[52]  Anastasios Bezerianos,et al.  Chimera States in Networks of Nonlocally Coupled Hindmarsh-Rose Neuron Models , 2013, Int. J. Bifurc. Chaos.

[53]  Katharina Krischer,et al.  Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. , 2013, Chaos.

[54]  Laurent Larger,et al.  Virtual chimera states for delayed-feedback systems. , 2013, Physical review letters.