Vertically aligned TiO2 nanotubes on plastic substrates for flexible solar cells.

Electrochemical anodization of a titanium film on a Kapton HN substrate leads to the formation of closely packed aligned nanotubes, whose shape can be finely tuned by tailoring the anodization parameters. An amorphous-to-anatase phase transition is induced on nanotubes by annealing at 350 °C. The nanotubes are applied as photoanodes in flexible dye-sensitized solar cells (N719 dye; I3-/I- redox couple), resulting in a photoconversion efficiency of up to 3.5% under simulated sunlight irradiation air mass 1.5 global (AM 1.5G).

[1]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[2]  S. Uchida,et al.  Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation , 2004 .

[3]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[4]  E. Diau,et al.  Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells , 2010 .

[5]  Seeram Ramakrishna,et al.  Controlled electron injection and transport at materials interfaces in dye sensitized solar cells , 2009 .

[6]  Torsten Oekermann,et al.  Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization , 2004 .

[7]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[8]  Hironori Arakawa,et al.  Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6% , 2010 .

[9]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[10]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[11]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[12]  Michael Dürr,et al.  Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers , 2005, Nature materials.

[13]  Arthur J. Frank,et al.  Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies , 2001 .

[14]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[15]  Adrian C. Fisher,et al.  Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2000 .

[16]  Michael Grätzel,et al.  Molecular photovoltaics that mimic photosynthesis , 2001 .

[17]  Bing Tan,et al.  Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. , 2006, The journal of physical chemistry. B.

[18]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[19]  Guo-Qiang Lo,et al.  High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode , 2008 .

[20]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[21]  Benjamin H. Meekins,et al.  Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. , 2009, ACS nano.

[22]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[23]  Mohammad Khaja Nazeeruddin,et al.  High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. , 2006, Chemical communications.

[24]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[25]  Tsukasa Yoshida,et al.  Room‐Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye‐Sensitized Solar Cells , 2006 .

[26]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[27]  Alexander Eychmüller,et al.  Electron Transport in Particulate ZnO Electrodes: A Simple Approach , 2002 .

[28]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[29]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[30]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[31]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[32]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[33]  ZnO/TiO2 nanonetwork as efficient photoanode in excitonic solar cells , 2009 .