Theory of Response to Perturbations in Non-Hermitian Systems Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics

Non-Hermitian quantum-Hamiltonian-candidate combination Hλ of a non-Hermitian unperturbed operator H=H0 with an arbitrary “small” non-Hermitian perturbation λW is given a mathematically consistent unitary-evolution interpretation. The formalism generalizes the conventional constructive Rayleigh–Schrödinger perturbation expansion technique. It is sufficiently general to take into account the well known formal ambiguity of reconstruction of the correct physical Hilbert space of states. The possibility of removal of the ambiguity via a complete, irreducible set of observables is also discussed.

[1]  M. Znojil,et al.  Problem of the coexistence of several non-Hermitian observables in PT -symmetric quantum mechanics , 2016, 1610.09396.

[2]  M. Stone On One-Parameter Unitary Groups in Hilbert Space , 1932 .

[3]  A. Smilga Cryptogauge symmetry and cryptoghosts for crypto-Hermitian Hamiltonians , 2007, 0706.4064.

[4]  J. Antoine,et al.  Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces , 2014, 1409.3497.

[5]  J. Antoine Beyond Hilbert space: RHS, PIP and all that , 2019, Journal of Physics: Conference Series.

[6]  Linear representation of energy-dependent Hamiltonians , 2004, quant-ph/0403223.

[7]  Relativistic supersymmetric quantum mechanics based on Klein–Gordon equation , 2004, hep-th/0408232.

[8]  H. Korsch,et al.  A non-Hermitian symmetric Bose–Hubbard model: eigenvalue rings from unfolding higher-order exceptional points , 2008, 0802.3164.

[9]  F. Scholtz,et al.  Quasi-Hermitian operators in quantum mechanics and the variational principle , 1992 .

[10]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[11]  Herman Feshbach Unified theory of nuclear reactions , 1958 .

[12]  G. Lévai Supersymmetry Without Hermiticity , 2004 .

[13]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[14]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .

[15]  E. Torrontegui,et al.  Shortcuts to adiabaticity for non-Hermitian systems , 2011, 1106.2776.

[16]  Freeman J. Dyson,et al.  General Theory of Spin-Wave Interactions , 1956 .

[17]  M. Znojil Non-Hermitian interaction representation and its use in relativistic quantum mechanics , 2017, 1702.08493.

[18]  Conservation of pseudo-norm in PT symmetric quantum mechanics , 2001, math-ph/0104012.

[19]  Fabio Bagarello,et al.  Deformed Canonical (anti‐)commutation relations and non‐self‐adjoint hamiltonians , 2015 .

[20]  Fabio Bagarello,et al.  Non-selfadjoint operators in quantum physics : mathematical aspects , 2015 .

[21]  Tosio Kato Perturbation theory for linear operators , 1966 .

[22]  Ali Mostafazadeh,et al.  Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.

[23]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[24]  R. Bishop,et al.  The coupled-cluster approach to quantum many-body problem in a three-Hilbert-space reinterpretation , 2013, 1311.6295.

[25]  M. Znojil Unitarity corridors to exceptional points , 2019, Physical Review A.

[26]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[27]  D. Krejčiřík,et al.  Pseudospectra in non-Hermitian quantum mechanics , 2014, 1402.1082.

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  M. Znojil Maximal couplings in -symmetric chain models with the real spectrum of energies , 2007, math-ph/0703070.

[30]  M. Znojil symmetric harmonic oscillators , 1999, quant-ph/9905020.

[31]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[32]  M. Znojil,et al.  Supersymmetry without hermiticity within PT symmetric quantum mechanics , 2000, hep-th/0003277.

[33]  Iveta Semor'adov'a CRYPTO-HERMITIAN APPROACH TO THE KLEIN–GORDON EQUATION , 2017, 1801.09602.

[34]  M. Znojil,et al.  Nonlinearity of perturbations in P T -symmetric quantum mechanics , 2019, Journal of Physics: Conference Series.

[36]  E. Davies,et al.  Non‐Self‐Adjoint Differential Operators , 2002 .

[37]  L. Trefethen Spectra and pseudospectra , 2005 .

[38]  Ömür Barkul Sigma 4 , 2012 .

[39]  R. Jolos,et al.  Boson description of collective states: (I). Derivation of the boson transformation for even fermion systems , 1971 .

[40]  M. Znojil,et al.  Systematic search for 𝒫𝒯-symmetric potentials with real energy spectra , 2000 .

[41]  M. Znojil Tridiagonal -symmetric N-by-N Hamiltonians and a fine-tuning of their observability domains in the strongly non-Hermitian regime , 2007, 0709.1569.

[42]  A. Das Pseudo-Hermitian quantum mechanics , 2011 .

[43]  Miloslav Znojil,et al.  Three-Hilbert-Space Formulation of Quantum Mechanics , 2009, 0901.0700.

[44]  D. Krejčiřík Calculation of the metric in the Hilbert space of a -symmetric model via the spectral theorem , 2007, 0707.1781.

[45]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[46]  D. Krejčiřík,et al.  On the metric operator for the imaginary cubic oscillator , 2012, 1208.1866.

[47]  M. Znojil Admissible perturbations and false instabilities in PT -symmetric quantum systems , 2018, 1803.01949.

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  M. Znojil,et al.  The minimally anisotropic metric operator in quasi-Hermitian quantum mechanics , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.