Theory of Response to Perturbations in Non-Hermitian Systems Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics
暂无分享,去创建一个
[1] M. Znojil,et al. Problem of the coexistence of several non-Hermitian observables in PT -symmetric quantum mechanics , 2016, 1610.09396.
[2] M. Stone. On One-Parameter Unitary Groups in Hilbert Space , 1932 .
[3] A. Smilga. Cryptogauge symmetry and cryptoghosts for crypto-Hermitian Hamiltonians , 2007, 0706.4064.
[4] J. Antoine,et al. Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces , 2014, 1409.3497.
[5] J. Antoine. Beyond Hilbert space: RHS, PIP and all that , 2019, Journal of Physics: Conference Series.
[6] Linear representation of energy-dependent Hamiltonians , 2004, quant-ph/0403223.
[7] Relativistic supersymmetric quantum mechanics based on Klein–Gordon equation , 2004, hep-th/0408232.
[8] H. Korsch,et al. A non-Hermitian symmetric Bose–Hubbard model: eigenvalue rings from unfolding higher-order exceptional points , 2008, 0802.3164.
[9] F. Scholtz,et al. Quasi-Hermitian operators in quantum mechanics and the variational principle , 1992 .
[10] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[11] Herman Feshbach. Unified theory of nuclear reactions , 1958 .
[12] G. Lévai. Supersymmetry Without Hermiticity , 2004 .
[13] J. Cizek. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .
[14] N. Moiseyev,et al. Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .
[15] E. Torrontegui,et al. Shortcuts to adiabaticity for non-Hermitian systems , 2011, 1106.2776.
[16] Freeman J. Dyson,et al. General Theory of Spin-Wave Interactions , 1956 .
[17] M. Znojil. Non-Hermitian interaction representation and its use in relativistic quantum mechanics , 2017, 1702.08493.
[18] Conservation of pseudo-norm in PT symmetric quantum mechanics , 2001, math-ph/0104012.
[19] Fabio Bagarello,et al. Deformed Canonical (anti‐)commutation relations and non‐self‐adjoint hamiltonians , 2015 .
[20] Fabio Bagarello,et al. Non-selfadjoint operators in quantum physics : mathematical aspects , 2015 .
[21] Tosio Kato. Perturbation theory for linear operators , 1966 .
[22] Ali Mostafazadeh,et al. Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.
[23] M. Miri,et al. Exceptional points in optics and photonics , 2019, Science.
[24] R. Bishop,et al. The coupled-cluster approach to quantum many-body problem in a three-Hilbert-space reinterpretation , 2013, 1311.6295.
[25] M. Znojil. Unitarity corridors to exceptional points , 2019, Physical Review A.
[26] W. Heiss,et al. The physics of exceptional points , 2012, 1210.7536.
[27] D. Krejčiřík,et al. Pseudospectra in non-Hermitian quantum mechanics , 2014, 1402.1082.
[28] Ericka Stricklin-Parker,et al. Ann , 2005 .
[29] M. Znojil. Maximal couplings in -symmetric chain models with the real spectrum of energies , 2007, math-ph/0703070.
[30] M. Znojil. symmetric harmonic oscillators , 1999, quant-ph/9905020.
[31] Carl M. Bender,et al. Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.
[32] M. Znojil,et al. Supersymmetry without hermiticity within PT symmetric quantum mechanics , 2000, hep-th/0003277.
[33] Iveta Semor'adov'a. CRYPTO-HERMITIAN APPROACH TO THE KLEIN–GORDON EQUATION , 2017, 1801.09602.
[34] M. Znojil,et al. Nonlinearity of perturbations in P T -symmetric quantum mechanics , 2019, Journal of Physics: Conference Series.
[36] E. Davies,et al. Non‐Self‐Adjoint Differential Operators , 2002 .
[37] L. Trefethen. Spectra and pseudospectra , 2005 .
[38] Ömür Barkul. Sigma 4 , 2012 .
[39] R. Jolos,et al. Boson description of collective states: (I). Derivation of the boson transformation for even fermion systems , 1971 .
[40] M. Znojil,et al. Systematic search for 𝒫𝒯-symmetric potentials with real energy spectra , 2000 .
[41] M. Znojil. Tridiagonal -symmetric N-by-N Hamiltonians and a fine-tuning of their observability domains in the strongly non-Hermitian regime , 2007, 0709.1569.
[42] A. Das. Pseudo-Hermitian quantum mechanics , 2011 .
[43] Miloslav Znojil,et al. Three-Hilbert-Space Formulation of Quantum Mechanics , 2009, 0901.0700.
[44] D. Krejčiřík. Calculation of the metric in the Hilbert space of a -symmetric model via the spectral theorem , 2007, 0707.1781.
[45] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[46] D. Krejčiřík,et al. On the metric operator for the imaginary cubic oscillator , 2012, 1208.1866.
[47] M. Znojil. Admissible perturbations and false instabilities in PT -symmetric quantum systems , 2018, 1803.01949.
[48] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[49] M. Znojil,et al. The minimally anisotropic metric operator in quasi-Hermitian quantum mechanics , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.