Rank-based inference tools for copula regression, with property and casualty insurance applications

Abstract Rank-based procedures are commonly used for inference in copula models for continuous responses whose behavior does not depend on covariates. This paper describes how these procedures can be adapted to the broader framework in which (possibly non-linear) regression models for the marginal responses are linked by a copula that does not depend on covariates. The validity of many of these techniques can be derived from the asymptotic equivalence between the classical empirical copula process and its analog based on suitable residuals from the marginal models. Moment-based parameter estimation and copula goodness-of-fit tests are shown to remain valid under weak conditions on the marginal error term distributions, even when the residual-based empirical copula process fails to converge weakly. The performance of these procedures is evaluated through simulation in the context of two general insurance applications: micro-level multivariate insurance claims, and dependent loss triangles.

[1]  Ping Wang,et al.  Credibility Using Copulas , 2005 .

[2]  Christian Genest,et al.  Copulas and Copula Models , 2014 .

[3]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[4]  E. Frees,et al.  Copula credibility for aggregate loss models , 2006 .

[5]  Jerald F. Lawless,et al.  Bivariate location–scale models for regression analysis, with applications to lifetime data , 2005 .

[6]  Convergence of integrals of uniform empirical and quantile processes , 1993 .

[7]  E. Frees,et al.  Dependent Multi-Peril Ratemaking Models , 2010, ASTIN Bulletin.

[8]  Peng Shi,et al.  Multilevel modeling of insurance claims using copulas , 2016 .

[9]  G. Cordeiro,et al.  A bivariate regression model with cure fraction , 2014 .

[10]  Jean-Marie Dufour,et al.  A regularized goodness-of-fit test for copulas , 2013 .

[11]  Jon A. Wellner,et al.  Empirical processes indexed by estimated functions , 2007, 0709.1013.

[12]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[13]  C. Varin,et al.  Gaussian Copula Marginal Regression , 2012 .

[14]  D. Oakes,et al.  Regression in a bivariate copula model , 2000 .

[15]  P. X. Song,et al.  Multivariate Dispersion Models Generated From Gaussian Copula , 2000 .

[16]  Irène Gijbels,et al.  Estimation of a Copula when a Covariate Affects only Marginal Distributions , 2015 .

[17]  Emiliano A. Valdez,et al.  Hierarchical Insurance Claims Modeling , 2008 .

[18]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[19]  G. Abecasis,et al.  Quantitative Trait Linkage Analysis Using Gaussian Copulas , 2006, Genetics.

[20]  Johan Segers,et al.  On the weak convergence of the empirical conditional copula under a simplifying assumption , 2015, J. Multivar. Anal..

[21]  C. Genest,et al.  Rank-based methods for modeling dependence between loss triangles , 2016, European Actuarial Journal.

[22]  David A. Stephens,et al.  A Bayesian Approach to Modeling Multivariate Multilevel Insurance Claims in the Presence of Unsettled Claims , 2020 .

[23]  J. Boucher,et al.  MODELING DEPENDENCE BETWEEN LOSS TRIANGLES WITH HIERARCHICAL ARCHIMEDEAN COPULAS , 2015, ASTIN Bulletin.

[24]  B. Rémillard Goodness-of-Fit Tests for Copulas of Multivariate Time Series , 2010 .

[25]  Marius Hofert,et al.  Parallel and Other Simulations in R Made Easy: An End-to-End Study , 2013 .

[26]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[27]  Edward W. Frees,et al.  Dependent Loss Reserving using Copulas , 2011 .

[28]  Modeling Dependence between Loss Triangles , 2012 .

[29]  Marek Omelka,et al.  A copula approach for dependence modeling in multivariate nonparametric time series , 2019, J. Multivar. Anal..

[30]  E. Frees,et al.  Household Life Insurance Demand , 2010 .

[31]  Fateh Chebana,et al.  Probabilistic Gaussian Copula Regression Model for Multisite and Multivariable Downscaling , 2014 .

[32]  Francisco Louzada-Neto,et al.  A bivariate regression model for matched paired survival data: local influence and residual analysis , 2010, Stat. Methods Appl..

[33]  Bruno Rémillard,et al.  Asymptotic behavior of the empirical multilinear copula process under broad conditions , 2017, J. Multivar. Anal..

[34]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[35]  C. Czado,et al.  A mixed copula model for insurance claims and claim sizes , 2012 .