Lump and travelling wave solutions of a (3+1)-dimensional nonlinear evolution equation

[1]  A. Seadawy,et al.  Diverse Multiple Lump Analytical Solutions for Ion Sound and Langmuir Waves , 2022, Mathematics.

[2]  A. Seadawy,et al.  Exact and numerical solutions to the system of the chlorite iodide malonic acid chemical reactions , 2021, Computational and Applied Mathematics.

[3]  A. Seadawy,et al.  Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg-de-Vries-Zakharov-Kuznetsov equation in plasma physics , 2021, Results in Physics.

[4]  M. Younis,et al.  Investigation on the Single and Multiple Dromions for Nonlinear Telegraph Equation in Electrical Transmission Line , 2021, Qualitative Theory of Dynamical Systems.

[5]  M. A. Sattar,et al.  First-principles investigations on the structural stability, thermophysical and half-metallic properties of the half-Heusler CrMnS alloy , 2021, Optical and Quantum Electronics.

[6]  F. S. Khodadad,et al.  Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation , 2021, Optical and Quantum Electronics.

[7]  H. Rezazadeh,et al.  New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques , 2021, Optical and Quantum Electronics.

[8]  B. Ghanbari Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics , 2021 .

[9]  Hadi Rezazadeh,et al.  Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model , 2021, Nonlinear Dynamics.

[10]  Wen-Xiu Ma,et al.  N-soliton solutions and dynamic property analysis of a generalized three-component Hirota-Satsuma coupled KdV equation , 2021, Appl. Math. Lett..

[11]  A. Seadawy,et al.  Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique , 2021 .

[12]  Safdar Ali,et al.  Investigation of solitons and mixed lump wave solutions with (3+1)-dimensional potential-YTSF equation , 2021, Commun. Nonlinear Sci. Numer. Simul..

[13]  S. Réhman,et al.  Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation , 2021 .

[14]  D. Baleanu,et al.  Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation , 2021 .

[15]  A. Seadawy,et al.  Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves , 2021 .

[16]  A. Seadawy,et al.  Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative , 2021 .

[17]  M. Awais,et al.  Optical dromions for perturbed nonlinear Schrödinger equation with cubic quintic septic media , 2021 .

[18]  M. Eslami,et al.  Generalized logistic equation method for Kerr law and dual power law Schrödinger equations , 2020, Optical and Quantum Electronics.

[19]  A. Bekir,et al.  Interaction properties of solitons for a couple of nonlinear evolution equations , 2020 .

[20]  A. Seadawy,et al.  Abundant closed form wave solutions to some nonlinear evolution equations in mathematical physics , 2020 .

[21]  A. Seadawy,et al.  New applications of the two variable (G′/G, 1/G)-expansion method for closed form traveling wave solutions of integro-differential equations , 2019, Journal of Ocean Engineering and Science.

[22]  N. Kudryashov The Painlevé approach for finding solitary wave solutions of nonlinear nonintegrable differential equations , 2019, Optik.

[23]  D. Lu,et al.  M-shaped rational solitons and their interaction with kink waves in the Fokas–Lenells equation , 2019, Physica Scripta.

[24]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[25]  D. Zeidan,et al.  Exact solutions for some time‐fractional evolution equations using Lie group theory , 2018, Mathematical Methods in the Applied Sciences.

[26]  K. Hosseini,et al.  New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method , 2018 .

[27]  Biao Li,et al.  A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced (3+1)-Dimensional Nonlinear Evolution Equation , 2017 .

[28]  Yaning Tang,et al.  Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations , 2017 .

[29]  S. Ray,et al.  New exact solutions of coupled Boussinesq–Burgers equations by Exp-function method , 2017 .

[30]  Mostafa M. A. Khater,et al.  Solitary wave solutions for the generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation , 2016 .

[31]  Na Liu,et al.  New multi-soliton solutions of a (3+1)-dimensional nonlinear evolution equation , 2016, Comput. Math. Appl..

[32]  M. S. Osman,et al.  Multi-soliton rational solutions for quantum Zakharov-Kuznetsov equation in quantum magnetoplasmas , 2016 .

[33]  A. Wazwaz Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations , 2014 .

[34]  Chao-Qing Dai,et al.  Notes on the equivalence of different variable separation approaches for nonlinear evolution equations , 2014, Commun. Nonlinear Sci. Numer. Simul..

[35]  Zhaqilao Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation , 2013 .

[36]  A. Wazwaz A variety of distinct kinds of multiple soliton solutions for a ( 3 + 1)‐dimensional nonlinear evolution equation , 2013 .

[37]  Hossein Jafari,et al.  Travelling wave solutions of nonlinear evolution equations using the simplest equation method , 2012, Comput. Math. Appl..

[38]  Yusuf Gurefe,et al.  EXP-FUNCTION METHOD FOR SOLVING NONLINEAR EVOLUTION EQUATIONS , 2011 .

[39]  Yusuf Gurefe,et al.  Exp-function method for solving nonlinear evolution equations with higher order nonlinearity , 2011, Comput. Math. Appl..

[40]  Ming-Liang Wang,et al.  The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations , 2010 .

[41]  Xianguo Geng,et al.  Some new integrable nonlinear evolution equations and Darboux transformation , 2010 .

[42]  Abdul-Majid Wazwaz,et al.  A (3 + 1)-dimensional nonlinear evolution equation with multiple soliton solutions and multiple singular soliton solutions , 2009, Appl. Math. Comput..

[43]  Ahmet Bekir,et al.  Applications of the extended tanh method for coupled nonlinear evolution equations , 2008 .

[44]  A. Bekir Application of the (G′G)-expansion method for nonlinear evolution equations , 2008 .

[45]  A. Bekir,et al.  Exact solutions for nonlinear evolution equations using Exp-function method , 2008 .

[46]  Xianguo Geng,et al.  N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation , 2007 .

[47]  Abdul-Majid Wazwaz,et al.  The extended tanh method for abundant solitary wave solutions of nonlinear wave equations , 2007, Appl. Math. Comput..

[48]  Abdul-Majid Wazwaz,et al.  A sine-cosine method for handlingnonlinear wave equations , 2004, Math. Comput. Model..

[49]  Xianguo Geng,et al.  Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations , 2003 .

[50]  S. Lou,et al.  Formal variable separation approach for nonintegrable models , 1999 .