Unifying Quantified Modal Logic

Quantified modal logic (QML) has reputation for complexity. Completeness results for the various systems appear piecemeal. Different tactics are used for different systems, and success of a given method seems sensitive to many factors, including the specific combination of choices made for the quantifiers, terms, identity, and the strength of the underlying propositional modal logic. The lack of a unified framework in which to view QMLs and their completeness properties puts pressure on those who develop, apply, and teach QML to work with the (allegedly) simplest systems, namely those that adopt the Barcan Formulas and predicate logic rules for the quantifiers. In these systems, the quantifier ranges over a fixed domain of possible individuals, so advocates of these logics are sometimes called possibilists. A literature has grown up rationalizing the choice of possibilist logics despite ordinary intuitions that the resulting theorems are too strong (Cresswell, 1991; Linsky and Zalta, 1994). Williamson (1998, p. 262) even takes the view that the complications to be faced within the weaker logics “are a warning sign of philosophical error”. It is the purpose of this paper to show that abandonment of the weaker QMLs is excessively fainthearted, since most QMLs can be given relatively simple formulations within one general framework. Given the straightforward nature of the systems and their completeness results, the purported complications evaporate, along with any philosophical warnings one might have associated with them.