Random walks and diffusion on networks

Abstract Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.

[1]  Mason A. Porter,et al.  Core-Periphery Structure in Networks , 2012, SIAM J. Appl. Math..

[2]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[3]  Paul T. Munroe Social Influence Network Theory: A Sociological Examination of Small Group Dynamics , 2013 .

[4]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Michael E. Fisher,et al.  Shape of a Self‐Avoiding Walk or Polymer Chain , 1966 .

[6]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[7]  Alessandro Vespignani,et al.  Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. , 2007, Journal of theoretical biology.

[8]  Minas Gjoka,et al.  Walking in Facebook: A Case Study of Unbiased Sampling of OSNs , 2010, 2010 Proceedings IEEE INFOCOM.

[9]  Mason A. Porter,et al.  Network analysis and modelling: Special issue of European Journal of Applied Mathematics , 2016, European Journal of Applied Mathematics.

[10]  Hao Liao,et al.  Ranking in evolving complex networks , 2017, ArXiv.

[11]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[12]  S. Redner,et al.  First-passage properties of the Erdos Renyi random graph , 2004, cond-mat/0410309.

[13]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[14]  Renaud Lambiotte,et al.  Respondent‐driven sampling bias induced by community structure and response rates in social networks , 2017 .

[15]  John J Kozak,et al.  Analytic expression for the mean time to absorption for a random walker on the Sierpinski gasket. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Dima Shepelyansky,et al.  Wikipedia ranking of world universities , 2015, The European Physical Journal B.

[17]  Adilson E. Motter,et al.  Bounding network spectra for network design , 2007, 0705.0089.

[18]  Guanrong Chen,et al.  Random walks on weighted networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Jean-Charles Delvenne,et al.  Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks , 2014, IEEE Transactions on Network Science and Engineering.

[20]  Peter D. Taylor,et al.  Allele-Frequency Change in a Class-Structured Population , 1990, The American Naturalist.

[21]  B. Harshbarger An Introduction to Probability Theory and its Applications, Volume I , 1958 .

[22]  Alhussein A. Abouzeid,et al.  Modeling and analysis of random walk search algorithms in P2P networks , 2005 .

[23]  Albert Solé-Ribalta,et al.  Navigability of interconnected networks under random failures , 2013, Proceedings of the National Academy of Sciences.

[24]  B Kahng,et al.  Effective trapping of random walkers in complex networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Tao Wu,et al.  General Tensor Spectral Co-clustering for Higher-Order Data , 2016, NIPS.

[26]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[27]  E. Agliari,et al.  Random walks on deterministic scale-free networks: exact results. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  R. Pastor-Satorras,et al.  Activity driven modeling of time varying networks , 2012, Scientific Reports.

[29]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[30]  R. Z. Norman,et al.  Some properties of line digraphs , 1960 .

[31]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[32]  Danai Koutra,et al.  RolX: structural role extraction & mining in large graphs , 2012, KDD.

[33]  Angelika Mueller,et al.  Principles Of Random Walk , 2016 .

[34]  Z. Burda,et al.  Localization of the maximal entropy random walk. , 2008, Physical review letters.

[35]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[36]  L. D. Costa,et al.  Exploring complex networks through random walks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[38]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[39]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[40]  B. Mohar Some applications of Laplace eigenvalues of graphs , 1997 .

[41]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[42]  Thomas Manke,et al.  Robustness and network evolution--an entropic principle , 2005 .

[43]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[44]  Sergio Gómez,et al.  Ranking in interconnected multilayer networks reveals versatile nodes , 2015, Nature Communications.

[45]  S. Havlin,et al.  Scaling theory of transport in complex biological networks , 2007, Proceedings of the National Academy of Sciences.

[46]  Sarah Rothstein,et al.  An Introduction To The Theory Of Graph Spectra , 2016 .

[47]  B. Kahng,et al.  Annihilation of two-species reaction–diffusion processes on fractal scale-free networks , 2008, 0811.2293.

[48]  Xiao Zhang,et al.  Localization and centrality in networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  J. S. Andrade,et al.  Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. , 2004, Physical review letters.

[50]  B Kahng,et al.  First passage time for random walks in heterogeneous networks. , 2012, Physical review letters.

[51]  Shlomo Havlin,et al.  Dynamic opinion model and invasion percolation. , 2009, Physical review letters.

[53]  Reuven Cohen,et al.  Complex Networks: Structure, Robustness and Function , 2010 .

[54]  Hernán A. Makse,et al.  Influence maximization in complex networks through optimal percolation , 2015, Nature.

[55]  Jean-Charles Delvenne,et al.  Flow graphs: interweaving dynamics and structure , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  D. Vere-Jones Markov Chains , 1972, Nature.

[57]  Benjamin H. Good,et al.  Performance of modularity maximization in practical contexts. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[59]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  George Weiss,et al.  Random walks and random environments, volume 1: Random walks , 1996 .

[61]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[62]  Joel Nishimura,et al.  Configuring Random Graph Models with Fixed Degree Sequences , 2016, SIAM Rev..

[63]  Mark E. J. Newman,et al.  Spectral community detection in sparse networks , 2013, ArXiv.

[64]  Carlo Piccardi,et al.  Finding and Testing Network Communities by Lumped Markov Chains , 2011, PloS one.

[65]  S. Lalley RENEWAL THEORY , 2014 .

[66]  James L. McClelland,et al.  The time course of perceptual choice: the leaky, competing accumulator model. , 2001, Psychological review.

[67]  Sokolov,et al.  Relaxation properties of small-world networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[70]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[71]  Piet Van Mieghem,et al.  Graph Spectra for Complex Networks , 2010 .

[72]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[73]  Michael Schroeder,et al.  Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes , 2012, PLoS Comput. Biol..

[74]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[75]  Lenka Zdeborová,et al.  Percolation on sparse networks , 2014, Physical review letters.

[76]  Shuigeng Zhou,et al.  Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Sergio Gómez,et al.  Spectral properties of the Laplacian of multiplex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  H. Poincaré,et al.  Percolation ? , 1982 .

[79]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[80]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[81]  Fan Chung,et al.  The heat kernel as the pagerank of a graph , 2007, Proceedings of the National Academy of Sciences.

[82]  Oliver C. Ibe,et al.  Elements of Random Walk and Diffusion Processes , 2013 .

[83]  Renaud Lambiotte,et al.  Burstiness and fractional diffusion on complex networks , 2016, The European Physical Journal B.

[84]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[85]  Ofer Biham,et al.  The distribution of first hitting times of random walks on directed Erdős–Rényi networks , 2017, 1703.10269.

[86]  Gerardo Chowell,et al.  Null Models for Community Detection in Spatially-Embedded, Temporal Networks , 2014, bioRxiv.

[87]  Sidney Redner,et al.  Scaling of the first-passage time and the survival probability on exact and quasi-exact self-similar structures , 1989 .

[88]  Naoki Masuda,et al.  Temporal networks: slowing down diffusion by long lasting interactions , 2013, Physical review letters.

[89]  Alexandre Arenas,et al.  Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems , 2014, ArXiv.

[90]  Shuigeng Zhou,et al.  Explicit determination of mean first-passage time for random walks on deterministic uniform recursive trees. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Sep Kamvar,et al.  Numerical Algorithms for Personalized Search in Self-organizing Information Networks , 2010 .

[92]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[93]  Shuigeng Zhou,et al.  Random walks on the Apollonian network with a single trap , 2009 .

[94]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[95]  Laurent Massoulié,et al.  Non-backtracking Spectrum of Random Graphs: Community Detection and Non-regular Ramanujan Graphs , 2014, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[96]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[97]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[98]  Alexander Blumen,et al.  Continuous-Time Quantum Walks: Models for Coherent Transport on Complex Networks , 2011, 1101.2572.

[99]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[100]  J. Kertész,et al.  Random walks on complex networks with inhomogeneous impact. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  A. Fronczak,et al.  Biased random walks in complex networks: the role of local navigation rules. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  Linyuan Lu,et al.  High-Ordered Random Walks and Generalized Laplacians on Hypergraphs , 2011, WAW.

[103]  D. Brockmann,et al.  Effective distances for epidemics spreading on complex networks , 2016, Physical review. E.

[104]  Remco van der Hofstad,et al.  Non-backtracking Random Walk , 2012, 1212.6390.

[105]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .

[106]  Yuni Iwamasa,et al.  Networks maximising the consensus time of voter models , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[107]  Zhongzhi Zhang,et al.  Full eigenvalues of the Markov matrix for scale-free polymer networks. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  H. D. Block,et al.  Random Orderings and Stochastic Theories of Responses (1960) , 1959 .

[109]  Andrea Baronchelli,et al.  Random walks on activity-driven networks with attractiveness. , 2017, Physical review. E.

[110]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[111]  Shi Zhou,et al.  The rich-club phenomenon in the Internet topology , 2003, IEEE Communications Letters.

[112]  N. Alon,et al.  Non-backtracking random walks mix faster , 2006, math/0610550.

[113]  S. N. Dorogovtsev,et al.  Laplacian spectra of, and random walks on, complex networks: are scale-free architectures really important? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  H. Ohtsuki,et al.  Evolutionary dynamics and fixation probabilities in directed networks , 2008, 0812.1075.

[115]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[116]  Felipe Torres,et al.  On hitting times for simple random walk on dense Erd\"os-R\'enyi random graphs , 2013, 1310.1792.

[117]  Ling-Yun Wu,et al.  Structure and dynamics of core/periphery networks , 2013, J. Complex Networks.

[118]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[119]  Hongyuan Zha,et al.  Co-ranking Authors and Documents in a Heterogeneous Network , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[120]  Mason A. Porter,et al.  Mutually-antagonistic interactions in baseball networks , 2009, 0907.5241.

[121]  H. Brand,et al.  Multiplicative stochastic processes in statistical physics , 1979 .

[122]  Mason A. Porter,et al.  Community Detection in Temporal Multilayer Networks, with an Application to Correlation Networks , 2014, Multiscale Model. Simul..

[123]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[124]  A. Barab Deterministic scale-free networks , 2007 .

[125]  Kenneth Falconer Fractals: A Very Short Introduction , 2013 .

[126]  Erik M. Volz,et al.  Probability based estimation theory for respondent driven sampling , 2008 .

[127]  W. Ewens Mathematical Population Genetics , 1980 .

[128]  Jari Saramäki,et al.  Exploring temporal networks with greedy walks , 2015, ArXiv.

[129]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[130]  A. Asztalos,et al.  Network discovery by generalized random walks , 2010, 1008.4980.

[131]  Steffen Trimper,et al.  Elephants can always remember: exact long-range memory effects in a non-Markovian random walk. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[132]  J. Gillis,et al.  Correlated random walk , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[133]  Peter J Mucha,et al.  Mathematical genealogy and department prestige. , 2011, Chaos.

[134]  Albert-László Barabási,et al.  Modeling bursts and heavy tails in human dynamics , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  Linus Bengtsson,et al.  The sensitivity of respondent‐driven sampling , 2012 .

[136]  Vittorio Loreto,et al.  The dynamics of correlated novelties , 2013, Scientific Reports.

[137]  Tanja Schilling,et al.  Clearing out a maze: The hungry random walker and its anomalous diffusion , 2016 .

[138]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[139]  Zhongzhi Zhang,et al.  Random walks in weighted networks with a perfect trap: an application of Laplacian spectra. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[140]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[141]  Renaud Lambiotte,et al.  Using higher-order Markov models to reveal flow-based communities in networks , 2016, Scientific Reports.

[142]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[143]  R. Pastor-Satorras,et al.  Random walks on complex trees. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[144]  Tao Zhou,et al.  Traffic dynamics based on local routing protocol on a scale-free network. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[145]  M. Newman Community detection in networks: Modularity optimization and maximum likelihood are equivalent , 2016, Physical review. E.

[146]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[147]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[148]  Naoki Masuda,et al.  Random Walks on Directed Networks: Inference and Respondent-Driven Sampling , 2013, ArXiv.

[149]  Jonathan P K Doye,et al.  Self-similar disk packings as model spatial scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  DESMOND J. HIGHAM,et al.  A matrix iteration for dynamic network , 2018 .

[151]  Franziska Wulf,et al.  Mathematical Population Genetics , 2016 .

[152]  Alan Fersht,et al.  The most influential journals: Impact Factor and Eigenfactor , 2009, Proceedings of the National Academy of Sciences.

[153]  Petter Holme,et al.  Modern temporal network theory: a colloquium , 2015, The European Physical Journal B.

[154]  S. Redner,et al.  Dynamics of majority rule in two-state interacting spin systems. , 2003, Physical review letters.

[155]  Kathleen E. Hamilton,et al.  Tight lower bound for percolation threshold on an infinite graph. , 2014, Physical review letters.

[156]  Russell Lyons,et al.  RandomWalks and Electric Networks , 2016 .

[157]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[158]  J. Quastel Diffusion in Disordered Media , 1996 .

[159]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[160]  Debora Donato,et al.  Large scale properties of the Webgraph , 2004 .

[161]  Daryl R. DeFord,et al.  Network models that reflect multiplex dynamics , 2015, ArXiv.

[162]  Christos Faloutsos,et al.  Epidemic spreading in real networks: an eigenvalue viewpoint , 2003, 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings..

[163]  Mason A. Porter,et al.  Generalized Master Equations for Non-Poisson Dynamics on Networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[164]  Elchanan Mossel,et al.  Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.

[165]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[166]  Haijun Zhou Network landscape from a Brownian particle's perspective. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[167]  Olivier Bénichou,et al.  Optimizing persistent random searches. , 2011, Physical review letters.

[168]  Filippo Radicchi,et al.  Who Is the Best Player Ever? A Complex Network Analysis of the History of Professional Tennis , 2011, PloS one.

[169]  Luis Enrique Correa da Rocha,et al.  Multiple seed structure and disconnected networks in respondent-driven sampling , 2016, ArXiv.

[170]  M. Newman,et al.  A network-based ranking system for US college football , 2005, physics/0505169.

[171]  P. V. Marsden,et al.  Models and Methods in Social Network Analysis: Recent Developments in Network Measurement , 2005 .

[172]  Jon M. Kleinberg,et al.  Block models and personalized PageRank , 2016, Proceedings of the National Academy of Sciences.

[173]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[174]  D. V. Lindley,et al.  An Introduction to Probability Theory and Its Applications. Volume II , 1967, The Mathematical Gazette.

[175]  Mason A. Porter,et al.  Dynamical Systems on Networks: A Tutorial , 2014, ArXiv.

[176]  David Griffeath,et al.  Annihilating and coalescing random walks on ℤd , 1978 .

[177]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[178]  Ingo Scholtes,et al.  Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks , 2013, Nature Communications.

[179]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[180]  Andrea Baronchelli,et al.  Quantifying the effect of temporal resolution on time-varying networks , 2012, Scientific Reports.

[181]  Jean-Charles Delvenne,et al.  Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit , 2011, PloS one.

[182]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[183]  Nicolas Privault,et al.  Understanding Markov Chains , 2013 .

[184]  C. Domb,et al.  From random to self-avoiding walks , 1983 .

[185]  Giuseppe Di Battista,et al.  26 Computer Networks , 2004 .

[186]  Renaud Lambiotte,et al.  Diffusion on networked systems is a question of time or structure , 2013, Nature Communications.

[187]  Sergei Maslov,et al.  Modularity and extreme edges of the internet. , 2003, Physical review letters.

[188]  A. Arenas,et al.  Abrupt transition in the structural formation of interconnected networks , 2013, Nature Physics.

[189]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[190]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[191]  Gourab Ghoshal,et al.  Ranking stability and super-stable nodes in complex networks. , 2011, Nature communications.

[192]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[193]  Shichao Yang Exploring complex networks by walking on them. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[194]  Mason A. Porter,et al.  A local perspective on community structure in multilayer networks , 2015, Network Science.

[195]  Erik M. Bollt,et al.  What is Special about Diffusion on Scale-Free Nets? , 2004 .

[196]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[197]  Devavrat Shah,et al.  Rank Centrality: Ranking from Pairwise Comparisons , 2012, Oper. Res..

[198]  Alessandro Vespignani Modelling dynamical processes in complex socio-technical systems , 2011, Nature Physics.

[199]  Harish Sethu,et al.  Waddling Random Walk: Fast and Accurate Mining of Motif Statistics in Large Graphs , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[200]  Shlomo Havlin,et al.  Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.

[201]  J. Delvenne,et al.  Centrality measures and thermodynamic formalism for complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[202]  Francesco Saverio Pavone,et al.  The theory of pattern formation on directed networks. , 2014, Nature communications.

[203]  Marius Iosifescu,et al.  Finite Markov Processes and Their Applications , 1981 .

[204]  Naoki Masuda,et al.  Analysis of relative influence of nodes in directed networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[205]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[206]  Jure Leskovec,et al.  Signed networks in social media , 2010, CHI.

[207]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[208]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[209]  Arnold O. Allen,et al.  Probability, statistics and queueing theory - with computer science applications (2. ed.) , 1981, Int. CMG Conference.

[210]  Colin Cooper,et al.  Coalescing Random Walks and Voting on Connected Graphs , 2012, SIAM J. Discret. Math..

[211]  Ernesto Estrada,et al.  The Structure of Complex Networks: Theory and Applications , 2011 .

[212]  Schwartz,et al.  Random multiplicative processes and transport in structures with correlated spatial disorder. , 1988, Physical review letters.

[213]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[214]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[215]  S Redner,et al.  Depletion-controlled starvation of a diffusing forager. , 2014, Physical review letters.

[216]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[217]  M. Ng,et al.  On the limiting probability distribution of a transition probability tensor , 2014 .

[218]  R. E. Amritkar,et al.  Random spread on the family of small-world networks. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[219]  Mason A. Porter,et al.  Estimating inter-event time distributions from finite observation periods in communication networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[220]  Lucas Lacasa,et al.  Multiplex Decomposition of Non-Markovian Dynamics and the Hidden Layer Reconstruction Problem , 2017, Physical Review X.

[221]  Michael Brinkmeier,et al.  PageRank revisited , 2006, TOIT.

[222]  Satya N. Majumdar,et al.  Record statistics of a strongly correlated time series: random walks and Lévy flights , 2017, 1702.00586.

[223]  J. Gómez-Gardeñes,et al.  Maximal-entropy random walks in complex networks with limited information. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[224]  Albert-Lszl Barabsi,et al.  Network Science , 2016, Encyclopedia of Big Data.

[225]  Rosario N. Mantegna,et al.  An Introduction to Econophysics: Contents , 1999 .

[226]  M. Moreau,et al.  Intermittent search strategies , 2011, 1104.0639.

[227]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[228]  J. Douglas Aspects and applications of the random walk , 1995 .

[229]  P. Blanchard,et al.  Random Walks and Diffusions on Graphs and Databases: An Introduction , 2011 .

[230]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[231]  Shuigeng Zhou,et al.  Trapping in scale-free networks with hierarchical organization of modularity. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[232]  Philip M. Davis Eigenfactor: Does the principle of repeated improvement result in better estimates than raw citation counts? , 2008 .

[233]  E Almaas,et al.  Scaling properties of random walks on small-world networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[234]  Matthew J. Salganik,et al.  5. Sampling and Estimation in Hidden Populations Using Respondent-Driven Sampling , 2004 .

[235]  Alan M. Frieze,et al.  The cover time of sparse random graphs. , 2003, SODA '03.

[236]  M. Evans,et al.  Nonequilibrium statistical mechanics of the zero-range process and related models , 2005, cond-mat/0501338.

[237]  S. Redner,et al.  Starvation dynamics of a greedy forager , 2017, 1704.05861.

[238]  Fan Chung A Local Graph Partitioning Algorithm Using Heat Kernel Pagerank , 2009 .

[239]  Zhongzhi Zhang,et al.  Effect of trap position on the efficiency of trapping in treelike scale-free networks , 2011 .

[240]  Martin Rosvall,et al.  Effect of Memory on the Dynamics of Random Walks on Networks , 2014, J. Complex Networks.

[241]  P. Donnelly,et al.  Finite particle systems and infection models , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[242]  Alan M. Frieze,et al.  The cover time of the preferential attachment graph , 2007, J. Comb. Theory, Ser. B.

[243]  Kristina Lerman,et al.  Capturing the interplay of dynamics and networks through parameterizations of Laplacian operators , 2016, PeerJ Comput. Sci..

[244]  A. Zinober Matrices: Methods and Applications , 1992 .

[245]  R. Lambiotte,et al.  Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks , 2008, IEEE Transactions on Network Science and Engineering.

[246]  Florian Heiss,et al.  Discrete Choice Methods with Simulation , 2016 .

[247]  Kenneth Dixon,et al.  Introduction to Stochastic Modeling , 2011 .

[248]  Kazuyuki Aihara,et al.  Steady state and mean recurrence time for random walks on stochastic temporal networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[249]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[250]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[251]  Xue-Qi Cheng,et al.  Uncovering the community structure associated with the diffusion dynamics on networks , 2009, 0911.2308.

[252]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[253]  Vito Latora,et al.  Collective Phenomena Emerging from the Interactions between Dynamical Processes in Multiplex Networks. , 2014, Physical review letters.

[254]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[255]  Ye Yuan,et al.  Observability and coarse graining of consensus dynamics through the external equitable partition. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[256]  Santo Fortunato,et al.  Community detection in networks: A user guide , 2016, ArXiv.

[257]  S Redner,et al.  Evolutionary dynamics on degree-heterogeneous graphs. , 2006, Physical review letters.

[258]  D. Cassi,et al.  Random walks on graphs: ideas, techniques and results , 2005 .

[259]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[260]  Andrea Baronchelli,et al.  The interplay between activity and attractiveness on random walks in time-varying networks , 2017, ArXiv.

[261]  Edith Cohen,et al.  Search and replication in unstructured peer-to-peer networks , 2002 .

[262]  Vittorio Loreto,et al.  Ring structures and mean first passage time in networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[263]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[264]  Stephen Ragain,et al.  Pairwise Choice Markov Chains , 2016, NIPS.

[265]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[266]  E. Montroll Random walks on lattices , 1969 .

[267]  Pavel Berkhin,et al.  A Survey on PageRank Computing , 2005, Internet Math..

[268]  Sergio Gómez,et al.  Random walk centrality in interconnected multilayer networks , 2015, ArXiv.

[269]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[270]  Romualdo Pastor-Satorras,et al.  Random walks on temporal networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[271]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[272]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[273]  S. Redner,et al.  Role of depletion on the dynamics of a diffusing forager , 2016, 1605.00892.

[274]  Edith Cohen,et al.  Search and replication in unstructured peer-to-peer networks , 2002, ICS '02.

[275]  P. Mucha,et al.  Communities in multislice voting networks. , 2010, Chaos.

[276]  S. Strogatz Exploring complex networks , 2001, Nature.

[277]  Martin Rosvall,et al.  Ranking and clustering of nodes in networks with smart teleportation , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[278]  W. Ewens Mathematical Population Genetics : I. Theoretical Introduction , 2004 .

[279]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[280]  Paolo Grigolini,et al.  Asymmetric Anomalous Diffusion: an Efficient Way to Detect Memory in Time Series , 2001 .

[281]  Kenneth A. Berman A Graph Theoretical Approach to Handicap Ranking of Tournaments and Paired Comparisons , 1980, SIAM J. Matrix Anal. Appl..

[282]  Steven J. Cox,et al.  Mathematics for Neuroscientists , 2010 .

[283]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[284]  Shang-Hua Teng,et al.  A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning , 2008, SIAM J. Comput..

[285]  S. Ostlund,et al.  Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering , 1979 .

[286]  Sariel Har-Peled,et al.  Random Walks , 2021, Encyclopedia of Social Network Analysis and Mining.

[287]  Ingo Scholtes,et al.  Betweenness Preference: Quantifying Correlations in the Topological Dynamics of Temporal Networks , 2012, Physical review letters.

[288]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[289]  S Redner,et al.  Safe leads and lead changes in competitive team sports. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[290]  Pierre Borgnat,et al.  Graph Wavelets for Multiscale Community Mining , 2014, IEEE Transactions on Signal Processing.

[291]  Mason A. Porter,et al.  Robust Detection of Dynamic Community Structure in Networks , 2012, Chaos.

[292]  Peter Grindrod,et al.  A Matrix Iteration for Dynamic Network Summaries , 2013, SIAM Rev..

[293]  S. Yook,et al.  Centrality measure of complex networks using biased random walks , 2009 .

[294]  E A Leicht,et al.  Mixture models and exploratory analysis in networks , 2006, Proceedings of the National Academy of Sciences.

[295]  H. Brand,et al.  Multiplicative stochastic processes in statistical physics , 1979 .

[296]  E. Agliari,et al.  Exact mean first-passage time on the T-graph. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[297]  Mitsuhiro Nakamura,et al.  Predictability of conversation partners , 2011, ArXiv.

[298]  Fabio Della Rossa,et al.  Profiling core-periphery network structure by random walkers , 2013, Scientific Reports.

[299]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[300]  Alessandro Vespignani,et al.  Random walks and search in time-varying networks. , 2012, Physical review letters.

[301]  Walter Willinger,et al.  On unbiased sampling for unstructured peer-to-peer networks , 2009, TNET.

[302]  M. Degroot Reaching a Consensus , 1974 .

[303]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[304]  O. Bénichou,et al.  Global mean first-passage times of random walks on complex networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[305]  S. Redner,et al.  Voter models on heterogeneous networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[306]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[307]  Sebastiano Vigna,et al.  PageRank as a function of the damping factor , 2005, WWW '05.

[308]  S. Redner,et al.  A Kinetic View of Statistical Physics , 2010 .

[309]  Maxi San Miguel,et al.  A measure of individual role in collective dynamics , 2010, Scientific Reports.

[310]  Elena Agliari,et al.  Exact calculations of first-passage properties on the pseudofractal scale-free web. , 2015, Chaos.

[311]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[312]  Sayan Mukherjee,et al.  Random walks on simplicial complexes and harmonics† , 2013, Random Struct. Algorithms.

[313]  Shuigeng Zhou,et al.  Exact solution for mean first-passage time on a pseudofractal scale-free web. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[314]  Pavel Yu. Chebotarev,et al.  The Matrix of Maximum Out Forests of a Digraph and Its Applications , 2006, ArXiv.

[315]  A Vespignani,et al.  Topical interests and the mitigation of search engine bias , 2006, Proceedings of the National Academy of Sciences.

[316]  Ginestra Bianconi,et al.  Multiplex PageRank , 2013, PloS one.

[317]  Alex Arenas,et al.  Collective frequency variation in network synchronization and reverse PageRank. , 2016, Physical review. E.

[318]  Shlomo Havlin,et al.  Trapping in complex networks , 2008, 0808.1736.

[319]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[320]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[321]  R. Durrett Lecture notes on particle systems and percolation , 1988 .

[322]  Manuel Cebrian,et al.  The rich club phenomenon in the , 2013 .

[323]  A. B. Rami Shani,et al.  Matrices: Methods and Applications , 1992 .

[324]  Naoki Masuda,et al.  Random walk centrality for temporal networks , 2014, ArXiv.

[325]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[326]  Shlomo Havlin,et al.  Mapping between hopping on hierarchical structures and diffusion on a family of fractals , 1986 .

[327]  Rayleigh The Problem of the Random Walk , 1905, Nature.

[328]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[329]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[330]  C. von Ferber,et al.  Dynamics of Vicsek fractals, models for hyperbranched polymers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[331]  Lada A. Adamic,et al.  Search in Power-Law Networks , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[332]  Michele Benzi,et al.  The Physics of Communicability in Complex Networks , 2011, ArXiv.

[333]  Alex Arenas,et al.  Impact of community structure on information transfer. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[334]  J. Klafter,et al.  First-passage times in complex scale-invariant media , 2007, Nature.

[335]  J. Moon,et al.  On Generalized Tournament Matrices , 1970 .

[336]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[337]  Marco Slikker,et al.  An Iterative Procedure for Evaluating Digraph Competitions , 2002, Ann. Oper. Res..

[338]  Mason A. Porter,et al.  Think Locally, Act Locally: The Detection of Small, Medium-Sized, and Large Communities in Large Networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[339]  P D Taylor,et al.  Inclusive fitness arguments in genetic models of behaviour , 1996, Journal of mathematical biology.

[340]  Edward Ott,et al.  Characterizing the dynamical importance of network nodes and links. , 2006, Physical review letters.

[341]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[342]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs , 2012, IEEE Transactions on Signal Processing.

[343]  Lin Li,et al.  Graph Model Selection via Random Walks , 2017, ArXiv.

[344]  Shlomi Reuveni,et al.  Vibrational shortcut to the mean-first-passage-time problem. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[345]  R. Plackett The Analysis of Permutations , 1975 .

[346]  Romualdo Pastor-Satorras,et al.  Slow relaxation dynamics and aging in random walks on activity driven temporal networks , 2014, The European Physical Journal B.

[347]  Marián Boguñá,et al.  Approximating PageRank from In-Degree , 2007, WAW.

[348]  Gabriel Pinski,et al.  Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics , 1976, Inf. Process. Manag..

[349]  Francesco Sorrentino,et al.  Cluster synchronization and isolated desynchronization in complex networks with symmetries , 2013, Nature Communications.

[350]  Boleslaw K. Szymanski,et al.  Quantifying patterns of research-interest evolution , 2017, Nature Human Behaviour.

[351]  P. Kareiva,et al.  Analyzing insect movement as a correlated random walk , 1983, Oecologia.

[352]  O. Ore Pascal and the invention of probability theory , 1959 .

[353]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[354]  Naoki Masuda,et al.  Return times of random walk on generalized random graphs. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[355]  Tamás Vicsek,et al.  Fractal models for diffusion controlled aggregation , 1983 .

[356]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[357]  Matthias Grossglauser,et al.  Fast and Accurate Inference of Plackett-Luce Models , 2015, NIPS.

[358]  Johannes Gehrke,et al.  Edge-Weighted Personalized PageRank: Breaking A Decade-Old Performance Barrier , 2015, KDD.

[359]  Kwok Yip Szeto,et al.  Asymptotic analysis of first passage time in complex networks , 2009, 0909.0605.

[360]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[361]  H. Kori,et al.  Impact of hierarchical modular structure on ranking of individual nodes in directed networks , 2009, 0907.0900.

[362]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[363]  Daryl R. DeFord,et al.  A new framework for dynamical models on multiplex networks , 2015, J. Complex Networks.

[364]  Conrado J. Pérez Vicente,et al.  Diffusion dynamics on multiplex networks , 2012, Physical review letters.

[365]  Vito Latora,et al.  Characteristic times of biased random walks on complex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[366]  Naoki Masuda,et al.  A Guide to Temporal Networks , 2016, Series on Complexity Science.

[367]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[368]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[369]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[370]  S. Dongen Graph clustering by flow simulation , 2000 .

[371]  Paul E Parris,et al.  Traversal times for random walks on small-world networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[372]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[373]  Dima Shepelyansky,et al.  Google matrix analysis of directed networks , 2014, ArXiv.

[374]  Ulla Miekkala,et al.  Graph properties for splitting with grounded Laplacian matrices , 1993 .

[375]  Uriel Feige,et al.  Short random walks on graphs , 1993, SIAM J. Discret. Math..

[376]  David F. Gleich,et al.  The Spacey Random Walk: A Stochastic Process for Higher-Order Data , 2016, SIAM Rev..

[377]  O. Bénichou,et al.  From first-passage times of random walks in confinement to geometry-controlled kinetics , 2014 .

[378]  Mason A. Porter,et al.  Eigenvector-Based Centrality Measures for Temporal Networks , 2015, Multiscale Model. Simul..

[379]  Mauricio Barahona,et al.  Interest communities and flow roles in directed networks: the Twitter network of the UK riots , 2013, Journal of The Royal Society Interface.

[380]  Mason Porter,et al.  Small-world network , 2012, Scholarpedia.

[381]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[382]  Mason A. Porter,et al.  Random Walker Ranking for NCAA Division I-A Football , 2007, Am. Math. Mon..

[383]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[384]  Dirk Brockmann,et al.  Cover time for random walks on arbitrary complex networks , 2017, Physical review. E.

[385]  A survey of random processes with reinforcement , 2007, math/0610076.

[386]  Ryszard Kutner,et al.  The continuous time random walk, still trendy: fifty-year history, state of art and outlook , 2016, The European Physical Journal B.

[387]  Krista Gile Improved Inference for Respondent-Driven Sampling Data With Application to HIV Prevalence Estimation , 2010, 1006.4837.

[388]  Francisco Pedroche,et al.  A biplex approach to PageRank centrality: From classic to multiplex networks. , 2016, Chaos.

[389]  Devavrat Shah,et al.  Iterative ranking from pair-wise comparisons , 2012, NIPS.

[390]  Rajeev Motwani,et al.  What can you do with a Web in your Pocket? , 1998, IEEE Data Eng. Bull..

[391]  R. Pastor-Satorras,et al.  Mean-field diffusive dynamics on weighted networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[392]  Ravi Kumar,et al.  Are web users really Markovian? , 2012, WWW.

[393]  Thomas K. D. M. Peron,et al.  The Kuramoto model in complex networks , 2015, 1511.07139.

[394]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[395]  B. Kahng,et al.  Geometric fractal growth model for scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[396]  David Gfeller,et al.  Spectral coarse graining of complex networks. , 2007, Physical review letters.

[397]  D. Grebenkov,et al.  The escape problem for mortal walkers. , 2016, The Journal of chemical physics.

[398]  Jon M. Kleinberg,et al.  Community membership identification from small seed sets , 2014, KDD.

[399]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[400]  Nicolas Privault,et al.  Understanding Markov Chains: Examples and Applications , 2013 .

[401]  Gerd Stumme,et al.  Recommending Given Names , 2013, ArXiv.

[402]  N. Biggs Algebraic Potential Theory on Graphs , 1997 .

[403]  H. Daniels Round-robin tournament scores , 1969 .

[404]  Philip M. Davis Eigenfactor : Does the Principle of Repeated Improvement Result in Better Journal Impact Estimates than Raw Citation Counts? , 2008, J. Assoc. Inf. Sci. Technol..

[405]  Muhammad Sahimi,et al.  Diffusion in scale-free networks with annealed disorder. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[406]  Kristina Lerman,et al.  Rethinking Centrality: The Role of Dynamical Processes in Social Network Analysis , 2012, ArXiv.

[407]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[408]  Elliott W. Montroll,et al.  Random Walks on Lattices. III. Calculation of First‐Passage Times with Application to Exciton Trapping on Photosynthetic Units , 1969 .

[409]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[410]  Reinhard Lipowsky,et al.  Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify Communities and Subcommunities , 2004, International Conference on Computational Science.

[411]  Martin Rosvall,et al.  Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems , 2010, PloS one.

[412]  Thomas W. Valente Network models of the diffusion of innovations , 1996, Comput. Math. Organ. Theory.

[413]  Nitesh V. Chawla,et al.  Representing higher-order dependencies in networks , 2015, Science Advances.

[414]  Duanbing Chen,et al.  Vital nodes identification in complex networks , 2016, ArXiv.

[415]  Jean-Charles Delvenne,et al.  Stability of graph communities across time scales , 2008, Proceedings of the National Academy of Sciences.

[416]  Francesco Bullo,et al.  Opinion Dynamics and the Evolution of Social Power in Influence Networks , 2015, SIAM Rev..

[417]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[418]  David F. Gleich,et al.  Heat kernel based community detection , 2014, KDD.

[419]  David Gfeller,et al.  Spectral coarse graining and synchronization in oscillator networks. , 2007, Physical review letters.

[420]  Shlomo Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems: Diffusion in the Sierpinski gasket , 2000 .

[421]  M. Chupeau,et al.  Cover times of random searches , 2015, Nature Physics.

[422]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[423]  M E J Newman,et al.  Random graph models for directed acyclic networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[424]  B Kahng,et al.  Origin of the hub spectral dimension in scale-free networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[425]  G. Ermentrout Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators , 1992 .

[426]  Douglas D. Heckathorn,et al.  Respondent-driven sampling : A new approach to the study of hidden populations , 1997 .

[427]  David F. Gleich,et al.  PageRank beyond the Web , 2014, SIAM Rev..

[428]  Havlin,et al.  Mean first-passage time on loopless aggregates. , 1989, Physical review. A, General physics.

[429]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[430]  R. Rammal,et al.  Random walk statistics on fractal structures , 1984 .

[431]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[432]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[433]  Liyi Wen,et al.  ON THE LIMITING PROBABILITY DISTRIBUTION OF A TRANSITION PROBABILITY TENSOR , 2011 .

[434]  V. Climenhaga Markov chains and mixing times , 2013 .

[435]  F Jasch,et al.  Trapping of random walks on small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[436]  L. Gallos Random walk and trapping processes on scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[437]  Yunming Ye,et al.  MultiRank: co-ranking for objects and relations in multi-relational data , 2011, KDD.

[438]  Ulrike Goldschmidt,et al.  Classical And Spatial Stochastic Processes , 2016 .

[439]  Vito Latora,et al.  Entropy rate of diffusion processes on complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[440]  F. Schweitzer,et al.  Nonlinear voter models: the transition from invasion to coexistence , 2003, cond-mat/0307742.

[441]  Jean-Charles Delvenne,et al.  The stability of a graph partition: A dynamics-based framework for community detection , 2013, ArXiv.

[442]  Martin Rosvall,et al.  Memory in network flows and its effects on spreading dynamics and community detection , 2013, Nature Communications.

[443]  K. Kaski,et al.  Scaling of random spreading in small world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[444]  Shlomo Havlin,et al.  Fractal and transfractal recursive scale-free nets , 2007 .

[445]  M. A. Muñoz,et al.  Optimal network topologies: expanders, cages, Ramanujan graphs, entangled networks and all that , 2006, cond-mat/0605565.

[446]  Klaus M. Frahm,et al.  Publisher’s Note: Google matrix analysis of directed networks [Rev. Mod. Phys. 87 , 1261 (2015)] , 2016 .

[447]  Manlio De Domenico,et al.  Diffusion geometry unravels the emergence of functional clusters in collective phenomena , 2017, Physical review letters.

[448]  C. McCarty,et al.  Comparing Two Methods for Estimating Network Size , 2001 .

[449]  Naoki Masuda,et al.  Voter model on the two-clique graph. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.