Nanosecond Pulsed Discharge for CO2 Conversion: Kinetic Modeling To Elucidate the Chemistry and Improve the Performance

We study the mechanisms of CO 2 conversion in a nanosecond repetitively pulsed (NRP) discharge, by means of a chemical kinetics model. The calculated conversions and energy efficiencies are in reasonable agreement with experimental results over a wide range of specific energy input values, and the same applies to the evolution of gas temperature and CO 2 conversion as a function of time in the afterglow, indicating that our model provides a realistic picture of the underlying mechanisms in the NRP discharge and can be used to identify its limitations and thus to suggest further improvements. Our model predicts that vibrational excitation is very important in the NRP discharge, explaining why this type of plasma yields energy-efficient CO 2 conversion. A significant part of the CO 2 dissociation occurs by electronic excitation from the lower vibrational levels toward repulsive electronic states, thus resulting in dissociation. However, vibration-translation (VT) relaxation (depopulating the higher vibrational levels) and CO + O recombination (CO + O + M → CO 2 + M), as well as mixing of the converted gas with fresh gas entering the plasma in between the pulses, are limiting factors for the conversion and energy efficiency. Our model predicts that extra cooling, slowing down the rate of VT relaxation and of the above recombination reaction, thus enhancing the contribution of the highest vibrational levels to the overall CO 2 dissociation, can further improve the performance of the NRP discharge for energy-efficient CO 2 conversion.

[1]  T. Märk,et al.  Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone , 1997 .

[2]  X. Tu,et al.  Plasma-Based Dry Reforming: A Computational Study Ranging from the Nanoseconds to Seconds Time Scale , 2013 .

[3]  N. Popov Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production , 2016 .

[4]  S. Lawton,et al.  Excitation of the b 1Σ+g state of O2 by low energy electrons , 1978 .

[5]  L. Alves,et al.  Electron-neutral scattering cross sections for CO2: a complete and consistent set and an assessment of dissociation , 2016 .

[6]  C. Simpson,et al.  Erratum: Vibrational Relaxation in CO2 and CO2–Ar Mixtures Studied Using a Shock Tube and a Laser–Schlieren Technique , 1969 .

[7]  P. Tosi,et al.  CO2 Hydrogenation by CH4 in a Dielectric Barrier Discharge: Catalytic Effects of Nickel and Copper , 2014 .

[8]  P. Vervisch,et al.  Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: I. Gas temperature and vibrational distribution function of N2 and O2 , 2014 .

[9]  F. Fehsenfeld,et al.  Laboratory measurements of negative ion reactions of atmospheric interest , 1967 .

[10]  Ramses Snoeckx,et al.  Plasma technology - a novel solution for CO2 conversion? , 2017, Chemical Society reviews.

[11]  D. Lacoste,et al.  Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF , 2010 .

[12]  M. Capitelli,et al.  Electron energy distribution functions and fractional power transfer in “cold” and excited CO2 discharge and post discharge conditions , 2016 .

[13]  M. Shneider Turbulent decay of after-spark channels , 2006 .

[14]  X. Tu,et al.  CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model , 2016 .

[15]  L. Frommhold Über verzögerte Elektronen in Elektronenlawinen, insbesondere in Sauerstoff und Luft, durch Bildung und Zerfall negativer Ionen (O-) , 1964 .

[16]  Dong-Wha Park,et al.  High-Efficient Conversion of CO2 in AC-Pulsed Tornado Gliding Arc Plasma , 2016, Plasma Chemistry and Plasma Processing.

[17]  Paul T Anastas,et al.  Applying the principles of Green Engineering to cradle-to-cradle design. , 2003, Environmental science & technology.

[18]  J. Whitehead,et al.  Effects of Reactor Packing Materials on H2 Production by CO2 Reforming of CH4 in a Dielectric Barrier Discharge , 2012 .

[19]  A. Bogaerts,et al.  Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion. , 2017, ChemSusChem.

[20]  R. E. Pechacek,et al.  Channel cooling by turbulent convective mixing , 1985 .

[21]  Raymond L. Taylor,et al.  Survey of Vibrational Relaxation Data for Processes Important in the C O 2 - N 2 Laser System , 1969 .

[22]  A. Bogaerts,et al.  Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model , 2014 .

[23]  Jae-Wook Choi,et al.  Conversion of CO2 by Gliding Arc Plasma , 2006 .

[24]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[25]  Yi Cheng,et al.  Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor with Ni/Al2O3 Catalyst: Interaction of Catalyst and Plasma , 2009 .

[26]  G. Nickerson,et al.  A Survey of Vibrational Relaxation Rate Data for Processes Important to CO2-N2-H2O Infrared Plume Radiation , 1974 .

[27]  Yi Cheng,et al.  Investigation of Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor , 2009 .

[28]  A. Gallimore,et al.  CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efficiency , 2012 .

[29]  J. Moruzzi,et al.  Negative ion molecule reactions in CO2 at high pressures and temperatures , 1974 .

[30]  D. Drysdale,et al.  Homogeneous gas phase reactions of the O2-O3 system, the CO-O2-H2 system, and of sulphur-containing species , 1976 .

[31]  J. Mitchell,et al.  The dissociative recombination and excitation of CO , 1985 .

[32]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables, 4th Edition , 1998 .

[33]  R. Snyders,et al.  CO2 Conversion in a Microwave Plasma Reactor in the Presence of N2: Elucidating the Role of Vibrational Levels , 2015 .

[34]  S. Iizuka,et al.  Reforming of Carbon Dioxide to Methane and Methanol by Electric Impulse Low-Pressure Discharge with Hydrogen , 2012, Plasma Chemistry and Plasma Processing.

[35]  X. Tu,et al.  CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling , 2017 .

[36]  Jen-Shih Chang,et al.  Chemical Kinetic Modelling of Non-Equilibrium Ar-H2 Thermal Plasmas , 1997 .

[37]  Mundiyath Venugopalan,et al.  Plasma Chemistry I , 1980 .

[38]  M. Capitelli,et al.  Vibrational excitation and dissociation mechanisms of CO2 under non-equilibrium discharge and post-discharge conditions , 2015 .

[39]  C. Flament,et al.  Nonequilibrium vibrational kinetics of carbon monoxide at high translational mode temperatures , 1992 .

[40]  Robert L. DeLeon,et al.  Vibrational energy exchange rates in carbon monoxide , 1986 .

[41]  R. Laher,et al.  Updated excitation and ionization cross sections for electron impact on atomic oxygen. Technical report, 1 October 1987-29 February 1988 , 1988 .

[42]  A. Gallimore,et al.  Efficiency of CO2 Dissociation in a Radio-Frequency Discharge , 2011 .

[43]  N. Adams,et al.  Reactions of HnCO+ ions with molecules at 300 K , 1978 .

[44]  Da Xu,et al.  Thermal and hydrodynamic effects of nanosecond discharges in air and application to plasma-assisted combustion , 2013 .

[45]  J. Lowke,et al.  Predicted electron transport coefficients and operating characteristics of CO2–N2–He laser mixtures , 1973 .

[46]  L. Pitchford,et al.  ZDPlasKin: a new tool for plasmachemical simulations , 2008 .

[47]  J. Branco,et al.  Influence of gas expansion on process parameters in non-thermal plasma plug-flow reactors: A study applied to dry reforming of methane , 2016 .

[48]  D. Albritton Ion-Neutral Reaction-Rate Constants Measured in Flow Reactors through 1977 , 1978 .

[49]  J. E. Land Electron scattering cross sections for momentum transfer and inelastic excitation in carbon monoxide , 1978 .

[50]  Michael A. Lieberman,et al.  Principles of Plasma Discharges and Materials Processing, 2nd Edition , 2003 .

[51]  Jessica Blunden,et al.  STATE OF THE CLIMATE IN 2015 , 2019 .

[52]  A. V. Phelps,et al.  Momentum-Transfer and Inelastic-Collision Cross Sections for Electrons in O-2, CO, and C O-2 , 1967 .

[53]  R. Sharma Near-Resonant Vibrational Energy Transfer Among Isotopes of CO2 , 1969 .

[54]  A. Bogaerts,et al.  The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study. , 2017, ChemSusChem.

[55]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[56]  G. Dilecce,et al.  Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO2 conversion , 2017 .

[57]  R. A. Smith,et al.  The detachment of electrons from negative ions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  D. Husain,et al.  Kinetic investigation of ground state carbon atoms, C(23PJ) , 1975 .

[59]  A. Bogaerts,et al.  Modeling of CO2 Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency , 2017 .

[60]  Karl F. Herzfeld,et al.  Deactivation of Vibrations by Collision in the Presence of Fermi Resonance , 1967 .

[61]  A. Fridman Plasma Chemistry: Frontmatter , 2008 .

[62]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Carbon Monoxide , 2002 .

[63]  M. Graswinckel,et al.  Plasma-driven dissociation of CO2 for fuel synthesis , 2017 .

[64]  Harold Brower,et al.  ADDENDUM to. , 2023, Anticancer research.

[65]  A. Bogaerts,et al.  CO2 Conversion in a Gliding Arc Plasmatron: Elucidating the Chemistry through Kinetic Modelling , 2017 .

[66]  D. J. Economou,et al.  Negative ion destruction by O(3P) atoms and O2(a 1Δg) molecules in an oxygen plasma , 2005 .

[67]  R. Snoeckx,et al.  CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design , 2017 .

[68]  A. Bogaerts,et al.  Influence of Vibrational States on CO2 Splitting by Dielectric Barrier Discharges , 2012 .

[69]  Xin Tu,et al.  Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor , 2011 .

[70]  A. Bogaerts,et al.  CO2 Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency , 2017 .

[71]  A. Bogaerts,et al.  Modeling plasma-based CO2 conversion: crucial role of the dissociation cross section , 2016 .

[72]  Y. Le Teuff,et al.  The UMIST database for astrochemistry , 2000 .

[73]  D. Albritton,et al.  Flow‐drift technique for ion mobility and ion‐molecule reaction rate constant measurements. III. Negative ion reactions of O− with CO, NO, H2, and D2 , 1973 .

[74]  A. Bogaerts,et al.  Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model , 2014 .

[75]  G. Dilecce,et al.  Conversion of CH4 /CO2 by a nanosecond repetitively pulsed discharge , 2016 .

[76]  P. Roth,et al.  ARAS measurements on the thermal decomposition of CO2 behind shock waves , 1990 .

[77]  A. Gutsol,et al.  Dissociation of CO2 in a low current gliding arc plasmatron , 2011 .

[78]  A. Phelps,et al.  Electron Attachment and Detachment. II. Mixtures of O2 and CO2 and of O2 and H2O , 1966 .

[79]  A. Bogaerts,et al.  Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry. , 2017, ChemSusChem.

[80]  A. D. Wood,et al.  Deactivation of Vibrationally Excited Carbon Dioxide (ν3) by Collisions with Carbon Dioxide or with Nitrogen , 1969 .

[81]  S. Lenaerts,et al.  CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity? , 2016 .

[82]  G. Guella,et al.  Oxidation of CH4 by CO2 in a dielectric barrier discharge , 2014 .

[83]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Oxygen Molecules , 2009 .

[84]  A. Bogaerts,et al.  Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study. , 2015, ChemSusChem.

[85]  J. Bergthorson,et al.  Regimes of an atmospheric pressure nanosecond repetitively pulsed discharge for methane partial oxidation , 2018 .

[86]  G. Dilecce,et al.  Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge , 2018, Plasma Chemistry and Plasma Processing.

[87]  A. Bogaerts,et al.  Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO2 Conversion , 2018, The Journal of Physical Chemistry C.

[88]  D. D. Drysdale,et al.  Evaluated kinetic data for high temperature reactions , 1972 .

[89]  B. N. Rossiter,et al.  The second limit of hydrogen + carbon monoxide + oxygen mixtures , 1972 .

[90]  F. Fehsenfeld,et al.  Laboratory studies of negative ion reactions with atmospheric trace constituents , 1974 .

[91]  A. Bogaerts,et al.  Modeling of CO2 plasma: effect of uncertainties in the plasma chemistry , 2017 .

[92]  M. Graswinckel,et al.  Taming microwave plasma to beat thermodynamics in CO2 dissociation. , 2015, Faraday discussions.

[93]  Axel Coussement,et al.  A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture , 2017 .

[94]  M. Capitelli,et al.  Non equilibrium vibrational assisted dissociation and ionization mechanisms in cold CO 2 plasmas , 2016 .