PIE: Pseudo-Invertible Encoder

We consider the problem of information compression from high dimensional data. Where many studies consider the problem of compression by non-invertible transformations, we emphasize the importance of invertible compression. We introduce a new class of likelihood-based autoencoders with pseudo bijective architecture, which we call Pseudo Invertible Encoders. We provide the theoretical explanation of their principles. We evaluate Gaussian Pseudo Invertible Encoder on MNIST, where our model outperforms WAE and VAE in sharpness of the generated images.

[1]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[2]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[3]  Arnold W. M. Smeulders,et al.  i-RevNet: Deep Invertible Networks , 2018, ICLR.

[4]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[5]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[6]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[7]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[8]  Raquel Urtasun,et al.  The Reversible Residual Network: Backpropagation Without Storing Activations , 2017, NIPS.

[9]  Naftali Tishby,et al.  Deep learning and the information bottleneck principle , 2015, 2015 IEEE Information Theory Workshop (ITW).

[10]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[11]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[12]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[13]  Alston S. Householder,et al.  Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.

[14]  D. Rumelhart Learning Internal Representations by Error Propagation, Parallel Distributed Processing , 1986 .

[15]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).