A localized molecular-orbital assembler approach for Hartree-Fock calculations of large molecules.

We describe an alternative fragment-based method, the localized molecular-orbital assembler method, for Hartree-Fock (HF) calculations of macromolecules. In this approach, a large molecule is divided into many small-size fragments, each of which is capped by its local surroundings. Then the conventional HF calculations are preformed on these capped fragments (or subsystems) and the canonical molecular orbitals of these systems are transferred into localized molecular orbitals (LMOs). By assembling the LMOs of these subsystems into a set of LMOs of the target molecule, the total density matrix of the target molecule is constructed and correspondingly the HF energy or other molecular properties can be approximately computed. This approach computationally achieves linear scaling even for medium-sized systems. Our test calculations with double-zeta and polarized double-zeta basis sets demonstrate that the present approach is able to reproduce the conventional HF energies within a few millihartrees for a broad range of molecules.

[1]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[2]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[3]  Michael J. Frisch,et al.  Improving harmonic vibrational frequencies calculations in density functional theory , 1997 .

[4]  W. Goddard,et al.  Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional , 2004 .

[5]  Paul G. Mezey,et al.  Quantum similarity measures and Löwdin's transform for approximate density matrices and macromolecular forces , 1997 .

[6]  D. York,et al.  Linear‐scaling semiempirical quantum calculations for macromolecules , 1996 .

[7]  S. L. Dixon,et al.  Fast, accurate semiempirical molecular orbital calculations for macromolecules , 1997 .

[8]  K. Merz,et al.  Implementation and Testing of a Frozen Density Matrix−Divide and Conquer Algorithm , 1999 .

[9]  Michael J. Frisch,et al.  A linear scaling method for Hartree–Fock exchange calculations of large molecules , 1996 .

[10]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[11]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[12]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[13]  Paul G. Mezey,et al.  Ab initio quality properties for macromolecules using the ADMA approach , 2003, J. Comput. Chem..

[14]  Gustavo E. Scuseria,et al.  What is the Best Alternative to Diagonalization of the Hamiltonian in Large Scale Semiempirical Calculations , 1999 .

[15]  J. Kinoshita Simple Life Satisfies This Grad Student , 1996, Science.

[16]  Michael J. Frisch,et al.  Density matrix search using direct inversion in the iterative subspace as a linear scaling alternative to diagonalization in electronic structure calculations , 2003 .

[17]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[18]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[19]  Paul G. Mezey,et al.  Macromolecular density matrices and electron densities with adjustable nuclear geometries , 1995 .

[20]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[21]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[22]  Shridhar R. Gadre,et al.  Ab initio quality one‐electron properties of large molecules: Development and testing of molecular tailoring approach , 2003, J. Comput. Chem..

[23]  Ye Mei,et al.  New method for direct linear-scaling calculation of electron density of proteins. , 2005, The journal of physical chemistry. A.

[24]  Paul G. Mezey,et al.  The Field-Adapted ADMA Approach: Introducing Point Charges , 2004 .

[25]  Gustavo E. Scuseria,et al.  A quantitative study of the scaling properties of the Hartree–Fock method , 1995 .

[26]  Shridhar R. Gadre,et al.  Molecular Tailoring Approach for Simulation of Electrostatic Properties , 1994 .

[27]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[28]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[29]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[30]  Paul G. Mezey,et al.  Ab Initio-Quality Electrostatic Potentials for Proteins: An Application of the ADMA Approach , 2002 .

[31]  Wei Li,et al.  Divide-and-conquer local correlation approach to the correlation energy of large molecules. , 2004, The Journal of chemical physics.

[32]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[33]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[34]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[35]  Paul G. Mezey,et al.  Quantum chemistry of macromolecular shape , 1997 .

[36]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[37]  Shridhar R. Gadre,et al.  Tailoring approach for exploring electron densities and electrostatic potentials of molecular crystals , 2004 .

[38]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[39]  S. L. Dixon,et al.  Semiempirical molecular orbital calculations with linear system size scaling , 1996 .

[40]  John Z H Zhang,et al.  New Advance in Computational Chemistry:  Full Quantum Mechanical ab Initio Computation of Streptavidin-Biotin Interaction Energy. , 2003, The journal of physical chemistry. B.

[41]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[42]  Paul G. Mezey,et al.  Functional Groups in Quantum Chemistry , 1996 .