Direct observation of how the heavy-fermion state develops in CeCoIn 5
暂无分享,去创建一个
Y. J. Zhang | T. Schmitt | D. Feng | V. Strocov | P. Dudin | M. Shi | R. Peng | D. Xu | X. Lai | S. Kirchner | Y. Huang | H. Q. Yuan | L. Shu | Z. Ding | K. Huang | H. C. Xu | Han-oh Lee | F. Bisti | Q. Chen | X. Niu | C. Wen | H. Lee | Huiqiu Yuan | J. Jiang | Kevin Huang | H. C. Xu | Yongjun Zhang | Y. Zhang | D. F. Xu | Y. J. Zhang | H. Yuan | H. C. Xu | H. Xu | D. Xu | H. C. Xu | M. Shi | H. C. Xu
[1] J. Allen,et al. ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo lattice CeRh2Si2 , 2016, Nature Communications.
[2] S. Fujimori. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.
[3] C. Varma. Quantum-critical fluctuations in 2D metals: strange metals and superconductivity in antiferromagnets and in cuprates , 2016, Reports on progress in physics. Physical Society.
[4] L. Taillefer,et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor , 2015, Nature.
[5] J. Allen,et al. Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2 , 2015 .
[6] H. Xiao,et al. Hidden T-linear scattering rate in Ba0.6K0.4Fe2As2 revealed by optical spectroscopy. , 2013, Physical review letters.
[7] Timur K. Kim,et al. Band dependent emergence of heavy quasiparticles in CeCoIn5 , 2013, 1307.5960.
[8] E. Bauer,et al. Visualizing nodal heavy fermion superconductivity in CeCoIn5 , 2013, Nature Physics.
[9] J. V. Van Dyke,et al. Imaging Cooper pairing of heavy fermions in CeCoIn5 , 2013, Nature Physics.
[10] R. Perry,et al. Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.
[11] Z. Fisk,et al. Emerging coherence with unified energy, temperature, and lifetime scale in heavy fermion YbRh2Si2 , 2012 .
[12] Takehisa Hasegawa,et al. Criticality governed by the stable renormalization fixed point of the Ising model in the hierarchical small-world network. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] Z. Fisk,et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice , 2012, Nature.
[14] Q. Si,et al. Superconductivity in Ce- and U-Based ‘‘122’’ Heavy-Fermion Compounds , 2012, 1202.4114.
[15] C. Krellner,et al. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2 , 2011, Nature.
[16] Z. Fisk,et al. Electronic structure and f-orbital occupancy in Yb-substituted CeCoIn5 , 2011 .
[17] G. Kotliar,et al. Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5. , 2011, Physical review letters.
[18] P. Coleman,et al. Frustration and the Kondo Effect in Heavy Fermion Materials , 2010, 1007.1723.
[19] Kristjan Haule,et al. Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , 2009, 0907.0195.
[20] C. Pfleiderer. Superconducting phases of f -electron compounds , 2009, 0905.2625.
[21] E. Bauer,et al. Electronic structure of CeCoIn5 from angle-resolved photoemission spectroscopy , 2009, 0902.2872.
[22] S. Hayden,et al. Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.
[23] J. Goodenough,et al. Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of|[nbsp]|a|[nbsp]|high-Tc superconductor , 2008, 0806.2881.
[24] S. Kimura,et al. Direct observation of dispersive Kondo resonance peaks in a heavy-fermion system. , 2008, Physical review letters.
[25] M. Knupfer,et al. The electronic structure of CeCoIn5 from angle-resolved photoemission spectroscopy II: Hybridization effects , 2008, 0902.2883.
[26] P. Misra. Heavy-Fermion systems , 2007 .
[27] G. Kotliar,et al. Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5 , 2007, Science.
[28] A. Fujimori,et al. Itinerant to localized transition of f electrons in the antiferromagnetic superconductor UPd 2 Al 3 , 2007, 0705.1734.
[29] E. Bauer,et al. Optical signatures of momentum-dependent hybridization of the local moments and conduction electrons in kondo lattices , 2007 .
[30] C. Geibel,et al. High-resolution photoemission study on low-TK Ce systems: Kondo resonance, crystal field structures, and their temperature dependence , 2007, cond-mat/0702360.
[31] C. Geibel,et al. Crystalline electric field excitations of the non-Fermi-liquid YbRh2Si2 , 2006 .
[32] A. Fujimori,et al. Direct observation of a quasiparticle band in CeIrIn5 : An angle-resolved photoemission spectroscopy study , 2006, cond-mat/0602296.
[33] P. Coleman,et al. Hall-effect evolution across a heavy-fermion quantum critical point , 2004, Nature.
[34] F. Trouw,et al. Crystalline electric field excitations in the heavy fermion superconductor CeCoIn5 , 2004, cond-mat/0401463.
[35] C. Geibel,et al. Structure and transport in multi-orbital Kondo systems , 2003, cond-mat/0702578.
[36] A. Fujimori,et al. Nearly localized nature off electrons in CeTIn5 (T = Rh, Ir) , 2003 .
[37] E. Bauer,et al. Optical conductivity of the heavy fermion superconductor CeCoIn 5 , 2002 .
[38] Z. Fisk,et al. Fermi surface of the heavy-fermion superconductor CeCoIn 5 : The de Haas–van Alphen effect in the normal state , 2001 .
[39] H. Harima,et al. Quasi-two-dimensional Fermi surfaces and the de Haas-van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn5 , 2001 .
[40] Z. Fisk,et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K , 2001, cond-mat/0103168.
[41] Q. Si,et al. Locally critical quantum phase transitions in strongly correlated metals , 2000, Nature.
[42] Qiang Li,et al. Evidence for Quantum Critical Behavior in the Optimally Doped Cuprate Bi2Sr2CaCu2O8+δ , 1999 .
[43] G. Aeppli,et al. Scaling of magnetic fluctuations near a quantum phase transition , 1998, cond-mat/9803004.
[44] A. Hewson. The Kondo Problem to Heavy Fermions , 1997 .
[45] Lynn,et al. Non-Fermi-liquid scaling of the magnetic response in UCu5-xPdx(x=1,1.5). , 1995, Physical review letters.
[46] P. Coleman,et al. The Kondo problem to heavy fermions , 1993 .
[47] Littlewood,et al. Phenomenology of the normal state of Cu-O high-temperature superconductors. , 1989, Physical review letters.
[48] R. Martin. Fermi-Surfae Sum Rule and its Consequences for Periodic Kondo and Mixed-Valence Systems , 1982 .
[49] B. Cornut,et al. Influence of the Crystalline Field on the Kondo Effect of Alloys and Compounds with Cerium Impurities , 1972 .
[50] E. Kaestner. Mixed Valence Compounds , 2016 .
[51] J. Goodenough,et al. Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor , 2008 .
[52] S. Fujita,et al. The Fermi Surface , 2007 .
[53] Iroon Polytechniou. Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .
[54] Catherine Hanley,et al. Louis: Copyright restrictions prevent ACM from providing the full text for this work. , 2004, SIGGRAPH '04.
[55] Tatsuo C. Kobayashi,et al. Fermi Surface, Magnetic and Superconducting Properties of LaRhIn5 and CeTIn5 (T: Co, Rh and Ir) , 2002 .