Direct observation of how the heavy-fermion state develops in CeCoIn 5

Heavy fermion materials gain high electronic masses and expand Fermi surfaces when the high-temperature localized f electrons become itinerant and hybridize with the conduction band at low temperatures. However, despite the common application of this model, direct microscopic verification remains lacking. Here we report high-resolution angle-resolved photoemission spectroscopy measurements on CeCoIn5, a prototypical heavy fermion compound, and reveal the long-sought band hybridization and Fermi surface expansion. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized at the lowest temperature. Moreover, crystal field excitations likely play an important role in the anomalous temperature dependence. Our results paint an comprehensive unanticipated experimental picture of the heavy fermion formation in a periodic multi-level Anderson/Kondo lattice, and set the stage for understanding the emergent properties in related materials.

[1]  J. Allen,et al.  ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo lattice CeRh2Si2 , 2016, Nature Communications.

[2]  S. Fujimori Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  C. Varma Quantum-critical fluctuations in 2D metals: strange metals and superconductivity in antiferromagnets and in cuprates , 2016, Reports on progress in physics. Physical Society.

[4]  L. Taillefer,et al.  Change of carrier density at the pseudogap critical point of a cuprate superconductor , 2015, Nature.

[5]  J. Allen,et al.  Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2 , 2015 .

[6]  H. Xiao,et al.  Hidden T-linear scattering rate in Ba0.6K0.4Fe2As2 revealed by optical spectroscopy. , 2013, Physical review letters.

[7]  Timur K. Kim,et al.  Band dependent emergence of heavy quasiparticles in CeCoIn5 , 2013, 1307.5960.

[8]  E. Bauer,et al.  Visualizing nodal heavy fermion superconductivity in CeCoIn5 , 2013, Nature Physics.

[9]  J. V. Van Dyke,et al.  Imaging Cooper pairing of heavy fermions in CeCoIn5 , 2013, Nature Physics.

[10]  R. Perry,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[11]  Z. Fisk,et al.  Emerging coherence with unified energy, temperature, and lifetime scale in heavy fermion YbRh2Si2 , 2012 .

[12]  Takehisa Hasegawa,et al.  Criticality governed by the stable renormalization fixed point of the Ising model in the hierarchical small-world network. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Z. Fisk,et al.  Visualizing heavy fermions emerging in a quantum critical Kondo lattice , 2012, Nature.

[14]  Q. Si,et al.  Superconductivity in Ce- and U-Based ‘‘122’’ Heavy-Fermion Compounds , 2012, 1202.4114.

[15]  C. Krellner,et al.  Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2 , 2011, Nature.

[16]  Z. Fisk,et al.  Electronic structure and f-orbital occupancy in Yb-substituted CeCoIn5 , 2011 .

[17]  G. Kotliar,et al.  Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5. , 2011, Physical review letters.

[18]  P. Coleman,et al.  Frustration and the Kondo Effect in Heavy Fermion Materials , 2010, 1007.1723.

[19]  Kristjan Haule,et al.  Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , 2009, 0907.0195.

[20]  C. Pfleiderer Superconducting phases of f -electron compounds , 2009, 0905.2625.

[21]  E. Bauer,et al.  Electronic structure of CeCoIn5 from angle-resolved photoemission spectroscopy , 2009, 0902.2872.

[22]  S. Hayden,et al.  Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.

[23]  J. Goodenough,et al.  Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of|[nbsp]|a|[nbsp]|high-Tc superconductor , 2008, 0806.2881.

[24]  S. Kimura,et al.  Direct observation of dispersive Kondo resonance peaks in a heavy-fermion system. , 2008, Physical review letters.

[25]  M. Knupfer,et al.  The electronic structure of CeCoIn5 from angle-resolved photoemission spectroscopy II: Hybridization effects , 2008, 0902.2883.

[26]  P. Misra Heavy-Fermion systems , 2007 .

[27]  G. Kotliar,et al.  Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5 , 2007, Science.

[28]  A. Fujimori,et al.  Itinerant to localized transition of f electrons in the antiferromagnetic superconductor UPd 2 Al 3 , 2007, 0705.1734.

[29]  E. Bauer,et al.  Optical signatures of momentum-dependent hybridization of the local moments and conduction electrons in kondo lattices , 2007 .

[30]  C. Geibel,et al.  High-resolution photoemission study on low-TK Ce systems: Kondo resonance, crystal field structures, and their temperature dependence , 2007, cond-mat/0702360.

[31]  C. Geibel,et al.  Crystalline electric field excitations of the non-Fermi-liquid YbRh2Si2 , 2006 .

[32]  A. Fujimori,et al.  Direct observation of a quasiparticle band in CeIrIn5 : An angle-resolved photoemission spectroscopy study , 2006, cond-mat/0602296.

[33]  P. Coleman,et al.  Hall-effect evolution across a heavy-fermion quantum critical point , 2004, Nature.

[34]  F. Trouw,et al.  Crystalline electric field excitations in the heavy fermion superconductor CeCoIn5 , 2004, cond-mat/0401463.

[35]  C. Geibel,et al.  Structure and transport in multi-orbital Kondo systems , 2003, cond-mat/0702578.

[36]  A. Fujimori,et al.  Nearly localized nature off electrons in CeTIn5 (T = Rh, Ir) , 2003 .

[37]  E. Bauer,et al.  Optical conductivity of the heavy fermion superconductor CeCoIn 5 , 2002 .

[38]  Z. Fisk,et al.  Fermi surface of the heavy-fermion superconductor CeCoIn 5 : The de Haas–van Alphen effect in the normal state , 2001 .

[39]  H. Harima,et al.  Quasi-two-dimensional Fermi surfaces and the de Haas-van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn5 , 2001 .

[40]  Z. Fisk,et al.  Heavy-fermion superconductivity in CeCoIn5 at 2.3 K , 2001, cond-mat/0103168.

[41]  Q. Si,et al.  Locally critical quantum phase transitions in strongly correlated metals , 2000, Nature.

[42]  Qiang Li,et al.  Evidence for Quantum Critical Behavior in the Optimally Doped Cuprate Bi2Sr2CaCu2O8+δ , 1999 .

[43]  G. Aeppli,et al.  Scaling of magnetic fluctuations near a quantum phase transition , 1998, cond-mat/9803004.

[44]  A. Hewson The Kondo Problem to Heavy Fermions , 1997 .

[45]  Lynn,et al.  Non-Fermi-liquid scaling of the magnetic response in UCu5-xPdx(x=1,1.5). , 1995, Physical review letters.

[46]  P. Coleman,et al.  The Kondo problem to heavy fermions , 1993 .

[47]  Littlewood,et al.  Phenomenology of the normal state of Cu-O high-temperature superconductors. , 1989, Physical review letters.

[48]  R. Martin Fermi-Surfae Sum Rule and its Consequences for Periodic Kondo and Mixed-Valence Systems , 1982 .

[49]  B. Cornut,et al.  Influence of the Crystalline Field on the Kondo Effect of Alloys and Compounds with Cerium Impurities , 1972 .

[50]  E. Kaestner Mixed Valence Compounds , 2016 .

[51]  J. Goodenough,et al.  Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor , 2008 .

[52]  S. Fujita,et al.  The Fermi Surface , 2007 .

[53]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .

[54]  Catherine Hanley,et al.  Louis: Copyright restrictions prevent ACM from providing the full text for this work. , 2004, SIGGRAPH '04.

[55]  Tatsuo C. Kobayashi,et al.  Fermi Surface, Magnetic and Superconducting Properties of LaRhIn5 and CeTIn5 (T: Co, Rh and Ir) , 2002 .