Switchable ultrastrong coupling in circuit QED.

We propose different designs of switchable coupling between a superconducting flux qubit and a microwave transmission line. They are based on two or more loops of Josephson junctions which are directly connected to a closed (cavity) or open transmission line. In both cases the circuit induces a coupling that can be modulated in strength, reaching the so-called ultrastrong coupling regime in which the coupling is comparable to the qubit and photon frequencies. Furthermore, we suggest a wide set of applications for the introduced architectures.

[1]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[2]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[3]  A. A. Anappara,et al.  Sub-cycle switch-on of ultrastrong light–matter interaction , 2009, Nature.

[4]  S. Filipp,et al.  Dressed collective qubit states and the Tavis-Cummings model in circuit QED. , 2008, Physical review letters.

[5]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[6]  A. A. Abdumalikov,et al.  Ultrastrong coupling regime of cavity QED with phase-biased flux qubits , 2009, 0906.1383.

[7]  A. A. Abdumalikov,et al.  Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator , 2008 .

[8]  Micromaser without the rotating-wave approximation: The Bloch-Siegert shift and related effects , 1997 .

[9]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[10]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[11]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[12]  E. Solano,et al.  Photodetection of propagating quantum microwaves in circuit QED , 2009, 0906.4362.

[13]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[14]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.

[15]  Entanglement and bifurcations in Jahn-Teller models , 2004, quant-ph/0402016.

[16]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[17]  M. Devoret,et al.  Quantum coherence with a single Cooper pair , 1998 .

[18]  Franco Nori,et al.  Dynamical Casimir effect in a superconducting coplanar waveguide. , 2009, Physical review letters.

[19]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[20]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[21]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[22]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[23]  J J García-Ripoll,et al.  Microwave photon detector in circuit QED. , 2008, Physical review letters.

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  E. Solano,et al.  Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED , 2008, 0805.3294.

[26]  S. Deleglise,et al.  Process tomography of field damping and measurement of Fock state lifetimes by quantum nondemolition photon counting in a cavity. , 2008, Physical review letters.

[27]  M. Mariantoni,et al.  Two-resonator circuit quantum electrodynamics : A superconducting quantum switch , 2007, 0712.2522.

[28]  Cristiano Ciuti,et al.  Quantum vacuum properties of the intersubband cavity polariton field , 2005, cond-mat/0504021.

[29]  Clarke,et al.  Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. , 1985, Physical review letters.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.