Gradient descent algorithms for Bures-Wasserstein barycenters
暂无分享,去创建一个
[1] K. Modin. Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry , 2016, 1601.01875.
[2] Wen Huang,et al. A Broyden Class of Quasi-Newton Methods for Riemannian Optimization , 2015, SIAM J. Optim..
[3] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[4] Thibaut Le Gouic,et al. Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space , 2019, Journal of the European Mathematical Society.
[5] Le Gouic Thibaut,et al. Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space , 2019 .
[6] Michael I. Jordan,et al. Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm , 2020, NeurIPS.
[7] Arnaud Doucet,et al. Fast Computation of Wasserstein Barycenters , 2013, ICML.
[8] Silvere Bonnabel,et al. Stochastic Gradient Descent on Riemannian Manifolds , 2011, IEEE Transactions on Automatic Control.
[9] Karl-Theodor Sturm,et al. Probability Measures on Metric Spaces of Nonpositive Curvature , 2003 .
[10] Gabriel Peyré,et al. Fast Optimal Transport Averaging of Neuroimaging Data , 2015, IPMI.
[11] Filippo Santambrogio,et al. Optimal Transport for Applied Mathematicians , 2015 .
[12] Suvrit Sra,et al. Nonconvex stochastic optimization on manifolds via Riemannian Frank-Wolfe methods , 2019, ArXiv.
[13] Martial Agueh,et al. Vers un théorème de la limite centrale dans l'espace de Wasserstein ? , 2017 .
[14] Sébastien Bubeck,et al. Convex Optimization: Algorithms and Complexity , 2014, Found. Trends Mach. Learn..
[15] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[16] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[17] Mark W. Schmidt,et al. Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition , 2016, ECML/PKDD.
[18] Thibaut Le Gouic,et al. Convergence rates for empirical barycenters in metric spaces: curvature, convexity and extendable geodesics , 2018, Probability Theory and Related Fields.
[19] Justin Solomon,et al. Stochastic Wasserstein Barycenters , 2018, ICML.
[20] David B. Dunson,et al. Scalable Bayes via Barycenter in Wasserstein Space , 2015, J. Mach. Learn. Res..
[21] Jérémie Bigot,et al. Upper and lower risk bounds for estimating the Wasserstein barycenter of random measures on the real line , 2018 .
[22] G. Carlier,et al. Matching for teams , 2010 .
[23] Thibaut Le Gouic,et al. On the rate of convergence of empirical barycentres in metric spaces: curvature, convexity and extendible geodesics , 2019 .
[24] Darina Dvinskikh. Stochastic Approximation versus Sample Average Approximation for population Wasserstein barycenter calculation , 2020 .
[25] Michael I. Jordan,et al. Averaging Stochastic Gradient Descent on Riemannian Manifolds , 2018, COLT.
[26] Thibaut Le Gouic,et al. Existence and consistency of Wasserstein barycenters , 2015, Probability Theory and Related Fields.
[27] D. Bures. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .
[28] Gabriel Peyré,et al. Wasserstein barycentric coordinates , 2016, ACM Trans. Graph..
[29] E. Ruh,et al. Angular Gaussian and Cauchy estimation , 2005 .
[30] Suvrit Sra,et al. First-order Methods for Geodesically Convex Optimization , 2016, COLT.
[31] Julien Rabin,et al. Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.
[32] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[33] Felipe A. Tobar,et al. Bayesian Learning with Wasserstein Barycenters , 2018, ESAIM: Probability and Statistics.
[34] Alexey Kroshnin,et al. Statistical inference for Bures–Wasserstein barycenters , 2019, The Annals of Applied Probability.
[35] Darina Dvinskikh,et al. On the Complexity of Approximating Wasserstein Barycenters , 2019, ICML.
[36] Luigi Malagò,et al. Wasserstein Riemannian geometry of Gaussian densities , 2018, Information Geometry.
[37] Victor M. Panaretos,et al. Fréchet means and Procrustes analysis in Wasserstein space , 2017, Bernoulli.
[38] Suvrit Sra,et al. Frank-Wolfe methods for geodesically convex optimization with application to the matrix geometric mean , 2017, ArXiv.
[39] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[40] Jean-Michel Loubes,et al. The price for fairness in a regression framework , 2020, ArXiv.
[41] R. Bhatia,et al. On the Bures–Wasserstein distance between positive definite matrices , 2017, Expositiones Mathematicae.
[42] Victor M. Panaretos,et al. Amplitude and phase variation of point processes , 2016, 1603.08691.
[43] Suvrit Sra,et al. Nonconvex stochastic optimization on manifolds via Riemannian Frank-Wolfe methods , 2019, ArXiv.
[44] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[45] M. Bacák. Convex Analysis and Optimization in Hadamard Spaces , 2014 .
[46] Julien Rabin,et al. Convex Color Image Segmentation with Optimal Transport Distances , 2015, SSVM.
[47] Ami Wiesel,et al. Geodesic Convexity and Covariance Estimation , 2012, IEEE Transactions on Signal Processing.
[48] M. Knott,et al. On a generalization of cyclic monotonicity and distances among random vectors , 1994 .
[49] S. Guminov,et al. Accelerated Alternating Minimization, Accelerated Sinkhorn's Algorithm and Accelerated Iterative Bregman Projections. , 2019 .
[50] C. Villani. Topics in Optimal Transportation , 2003 .
[51] J. A. Cuesta-Albertos,et al. A fixed-point approach to barycenters in Wasserstein space , 2015, 1511.05355.
[52] C. Villani. Optimal Transport: Old and New , 2008 .