Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria.

Most bacteria in nature live in surface-associated communities rather than planktonic populations. Nonetheless, how surface-associated environments shape bacterial evolutionary adaptation remains poorly understood. Here, we show that subjecting Pseudomonas aeruginosa to repeated rounds of swarming, a collective form of surface migration, drives remarkable parallel evolution toward a hyperswarmer phenotype. In all independently evolved hyperswarmers, the reproducible hyperswarming phenotype is caused by parallel point mutations in a flagellar synthesis regulator, FleN, which locks the naturally monoflagellated bacteria in a multiflagellated state and confers a growth rate-independent advantage in swarming. Although hyperswarmers outcompete the ancestral strain in swarming competitions, they are strongly outcompeted in biofilm formation, which is an essential trait for P. aeruginosa in environmental and clinical settings. The finding that evolution in swarming colonies reliably produces evolution of poor biofilm formers supports the existence of an evolutionary trade-off between motility and biofilm formation.

[1]  C. Fuqua,et al.  Bacterial competition: surviving and thriving in the microbial jungle , 2010, Nature Reviews Microbiology.

[2]  P. Andolfatto,et al.  Parallel Molecular Evolution in an Herbivore Community , 2012, Science.

[3]  B. Ersbøll,et al.  Quantification of biofilm structures by the novel computer program COMSTAT. , 2000, Microbiology.

[4]  G. O’Toole,et al.  Saccharomyces cerevisiae-Based Molecular Tool Kit for Manipulation of Genes from Gram-Negative Bacteria , 2006, Applied and Environmental Microbiology.

[5]  Anu Raghunathan,et al.  Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale , 2006, Nature Genetics.

[6]  Joanna B. Goldberg,et al.  Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes , 2011, Nature Genetics.

[7]  R. Kolter,et al.  Microbial sciences: The superficial life of microbes , 2006, Nature.

[8]  C. van Delden,et al.  Swarming of Pseudomonas aeruginosa Is Dependent on Cell-to-Cell Signaling and Requires Flagella and Pili , 2000, Journal of bacteriology.

[9]  Carey D. Nadell,et al.  Emergence of Spatial Structure in Cell Groups and the Evolution of Cooperation , 2010, PLoS Comput. Biol..

[10]  M. Matsushita,et al.  Swarming of Pseudomonas aeruginosa PAO1 without differentiation into elongated hyperflagellates on hard agar minimal medium. , 2008, FEMS microbiology letters.

[11]  S. Lory,et al.  Transcriptional Response of Mucoid Pseudomonas aeruginosa to Human Respiratory Mucus , 2012, mBio.

[12]  Sara Mitri,et al.  Social evolution in multispecies biofilms , 2011, Proceedings of the National Academy of Sciences.

[13]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[14]  G. Sundin,et al.  General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra , 2012, Proceedings of the National Academy of Sciences.

[15]  Anders Folkesson,et al.  Evolutionary dynamics of bacteria in a human host environment , 2011, Proceedings of the National Academy of Sciences.

[16]  K. Foster,et al.  Cooperation and conflict in microbial biofilms , 2007, Proceedings of the National Academy of Sciences.

[17]  D. Weinreich,et al.  Causes and evolutionary significance of genetic convergence. , 2010, Trends in genetics : TIG.

[18]  M Lanzer,et al.  Promoters largely determine the efficiency of repressor action. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. F. Bennett,et al.  The Molecular Diversity of Adaptive Convergence , 2012, Science.

[20]  Isabel Gordo,et al.  Adaptive Mutations in Bacteria: High Rate and Small Effects , 2007, Science.

[21]  J. Tremblay,et al.  Gene expression in Pseudomonas aeruginosa swarming motility , 2010, BMC Genomics.

[22]  R. Isberg,et al.  Experimental Evolution of Legionella pneumophila in Mouse Macrophages Leads to Strains with Altered Determinants of Environmental Survival , 2012, PLoS pathogens.

[23]  G. O’Toole,et al.  Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[24]  D. Hassett,et al.  Static growth of mucoid Pseudomonas aeruginosa selects for non-mucoid variants that have acquired flagellum-dependent motility. , 2002, Microbiology.

[25]  Gary Taubes,et al.  The Bacteria Fight Back , 2008, Science.

[26]  F. Lépine,et al.  Biosurfactant production by a soil pseudomonas strain growing on polycyclic aromatic hydrocarbons , 1996, Applied and environmental microbiology.

[27]  T. Murray,et al.  The GTPase Activity of FlhF Is Dispensable for Flagellar Localization, but Not Motility, in Pseudomonas aeruginosa , 2012, Journal of bacteriology.

[28]  A. F. Bennett,et al.  An experimental test of evolutionary trade-offs during temperature adaptation , 2007, Proceedings of the National Academy of Sciences.

[29]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[30]  K. Foster,et al.  A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa , 2011, Molecular microbiology.

[31]  K. Foster,et al.  Social Evolution of Spatial Patterns in Bacterial Biofilms: When Conflict Drives Disorder , 2009, The American Naturalist.

[32]  R. Hancock,et al.  Swarming of Pseudomonas aeruginosa Is Controlled by a Broad Spectrum of Transcriptional Regulators, Including MetR , 2009, Journal of bacteriology.

[33]  A. Oliver,et al.  High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2000, Science.

[34]  H. Terashima,et al.  Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. , 2006, Journal of biochemistry.

[35]  R. Ramphal,et al.  fleN, a Gene That Regulates Flagellar Number in Pseudomonas aeruginosa , 2000, Journal of bacteriology.

[36]  D. B. Kearns,et al.  A field guide to bacterial swarming motility , 2010, Nature Reviews Microbiology.

[37]  A. Matin,et al.  The G‐protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida , 2000, Molecular microbiology.

[38]  Nigel F. Delaney,et al.  Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation , 2011, Science.

[39]  A. F. Bennett,et al.  Evolutionary Response of Escherichia coli to Thermal Stress , 1993, The American Naturalist.

[40]  R. Lenski,et al.  Long-term experimental evolution in Escherichia coli , 1991 .

[41]  Dominique Schneider,et al.  Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Evan S Snitkin,et al.  Tracking a Hospital Outbreak of Carbapenem-Resistant Klebsiella pneumoniae with Whole-Genome Sequencing , 2012, Science Translational Medicine.

[43]  Lotte Lambertsen,et al.  Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. , 2004, Environmental microbiology.

[44]  Hsin-Hung Chou,et al.  Optimization of gene expression through divergent mutational paths. , 2012, Cell reports.

[45]  Raymond Lo,et al.  Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes , 2010, Nucleic Acids Res..

[46]  E. Greenberg,et al.  Timing and Localization of Rhamnolipid Synthesis Gene Expression in Pseudomonas aeruginosa Biofilms , 2005, Journal of bacteriology.

[47]  W. Matthew Leevy,et al.  Imaging and Analysis of Pseudomonas aeruginosa Swarming and Rhamnolipid Production , 2011, Applied and Environmental Microbiology.

[48]  Robert E. W. Hancock,et al.  The Sensor Kinase CbrA Is a Global Regulator That Modulates Metabolism, Virulence, and Antibiotic Resistance in Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[49]  G. O’Toole,et al.  Inverse Regulation of Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[50]  F. Lépine,et al.  rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. , 2003, Microbiology.

[51]  Oleg A Igoshin,et al.  Statistical image analysis reveals features affecting fates of Myxococcus xanthus developmental aggregates , 2011, Proceedings of the National Academy of Sciences.

[52]  M. Parsek,et al.  The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP , 2012, Nucleic acids research.

[53]  Julien Tremblay,et al.  Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays , 2008, Journal of basic microbiology.

[54]  J. Tremblay,et al.  Swarming motility: a multicellular behaviour conferring antimicrobial resistance. , 2009, Environmental microbiology.

[55]  D. Chopp,et al.  The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional , 2006, Molecular microbiology.

[56]  A. Buckling,et al.  SELECTION EXPERIMENTS REVEAL TRADE‐OFFS BETWEEN SWIMMING AND TWITCHING MOTILITIES IN PSEUDOMONAS AERUGINOSA , 2011, Evolution; international journal of organic evolution.

[57]  J. Xavier,et al.  High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization , 2011, BMC Microbiology.

[58]  B. Bassler,et al.  A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms , 2011, Proceedings of the National Academy of Sciences.

[59]  Blaise R. Boles,et al.  Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms , 2005, Molecular microbiology.

[60]  Markus W. Covert,et al.  A Forward-Genetic Screen and Dynamic Analysis of Lambda Phage Host-Dependencies Reveals an Extensive Interaction Network and a New Anti-Viral Strategy , 2010, PLoS genetics.

[61]  T. Murray,et al.  Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. , 2010, Journal of medical microbiology.

[62]  J. Kasting,et al.  Life and the Evolution of Earth's Atmosphere , 2002, Science.

[63]  D. Hendrixson,et al.  Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria , 2013, Molecular microbiology.

[64]  Kerry E. Boyle,et al.  Exploiting social evolution in biofilms. , 2013, Current opinion in microbiology.

[65]  W. D. de Vos,et al.  Anaerobic microbial dehalogenation. , 2003, Annual review of microbiology.

[66]  T. Murray,et al.  FlhF Is Required for Swimming and Swarming in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[67]  R. Hancock,et al.  Mucin Promotes Rapid Surface Motility in Pseudomonas aeruginosa , 2012, mBio.

[68]  A. Kornberg,et al.  Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  R. Ramphal,et al.  Interaction of the Antiactivator FleN with the Transcriptional Activator FleQ Regulates Flagellar Number inPseudomonas aeruginosa , 2001, Journal of bacteriology.

[70]  D. Hendrixson,et al.  Polar Flagellar Biosynthesis and a Regulator of Flagellar Number Influence Spatial Parameters of Cell Division in Campylobacter jejuni , 2011, PLoS pathogens.

[71]  Julien Tremblay,et al.  Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. , 2007, Environmental microbiology.

[72]  P. Williams,et al.  Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. , 2007, Microbiology.

[73]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[74]  I. Kukavica-Ibrulj,et al.  The Lon Protease Is Essential for Full Virulence in Pseudomonas aeruginosa , 2012, PloS one.

[75]  Stephen Lory,et al.  A four‐tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa , 2003, Molecular microbiology.

[76]  J. Rabinowitz,et al.  Cyclic-di-GMP-Mediated Repression of Swarming Motility by Pseudomonas aeruginosa: the pilY1 Gene and Its Impact on Surface-Associated Behaviors , 2010, Journal of bacteriology.

[77]  O Shoval,et al.  Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space , 2012, Science.

[78]  Frederick M. Ausubel,et al.  BifA, a Cyclic-Di-GMP Phosphodiesterase, Inversely Regulates Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[79]  Yoshihiro Hayakawa,et al.  A cyclic-di-GMP receptor required for bacterial exopolysaccharide production , 2007, Molecular microbiology.

[80]  Lawrence A. David,et al.  Rapid evolutionary innovation during an Archaean genetic expansion , 2011, Nature.

[81]  R. Lenski,et al.  Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli , 2008 .