Effect of carbonate substitution on physicochemical and biological properties of silver containing hydroxyapatites.

[1]  Y. Okada,et al.  A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection , 2016, Scientific Reports.

[2]  J. Kolmas,et al.  Synthetic hydroxyapatite in pharmaceutical applications , 2016 .

[3]  M. Vukomanović,et al.  Is Nano-Silver Safe within Bioactive Hydroxyapatite Composites? , 2015, ACS biomaterials science & engineering.

[4]  Monika Šupová,et al.  Substituted hydroxyapatites for biomedical applications: A review , 2015 .

[5]  G. A. Soares,et al.  Crystallographic Aspects Regarding the Insertion of Ag+Ions into a Hydroxyapatite Structure , 2015 .

[6]  E. Thian,et al.  Development of nanosized silver-substituted apatite for biomedical applications: A review. , 2015, Nanomedicine : nanotechnology, biology, and medicine.

[7]  U. Piotrowska,et al.  Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: physicochemical and antibacterial properties , 2015, Nanoscale Research Letters.

[8]  M. Sobczak,et al.  A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite , 2015, International journal of molecular sciences.

[9]  A. Ślósarczyk,et al.  Solid-State NMR Study of Mn2+ for Ca2+ Substitution in Thermally Processed Hydroxyapatites , 2015 .

[10]  J. Shepherd,et al.  Synthetic hydroxyapatite for tissue engineering applications , 2015 .

[11]  C. Choong,et al.  Proposed mechanism of antibacterial action of chemically modified apatite for reduced bone infection. , 2014, ACS applied materials & interfaces.

[12]  A. Dubnika,et al.  Preparation and characterization of porous Ag doped hydroxyapatite bioceramic scaffolds , 2014 .

[13]  M. Kowshik,et al.  Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique , 2014, Applied Nanoscience.

[14]  QUAN LIU,et al.  Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches , 2013, BioMed research international.

[15]  M. Murali,et al.  Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process , 2013 .

[16]  W. Kołodziejski,et al.  Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling , 2013, Journal of Nanoparticle Research.

[17]  M. Epple,et al.  Silver as antibacterial agent: ion, nanoparticle, and metal. , 2013, Angewandte Chemie.

[18]  M. Jelínek,et al.  Antibacterial, cytotoxicity and physical properties of laser--silver doped hydroxyapatite layers. , 2013, Materials science & engineering. C, Materials for biological applications.

[19]  Matthias Epple,et al.  Silver as antibacterial agent: ion, nanoparticle, and metal. , 2013, Angewandte Chemie.

[20]  S. Best,et al.  Production of zinc substituted hydroxyapatite using various precipitation routes , 2013, Biomedical materials.

[21]  Y. Rhee,et al.  Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method , 2013 .

[22]  C. Choong,et al.  Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties , 2013, Journal of Materials Science: Materials in Medicine.

[23]  Shengmin Zhang,et al.  Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles , 2012 .

[24]  D. Uskoković,et al.  Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones , 2012, Journal of Materials Science: Materials in Medicine.

[25]  T. Kumar,et al.  Strontium‐Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties , 2012 .

[26]  D. Predoi,et al.  Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria , 2012, Nanoscale Research Letters.

[27]  A. Dubey,et al.  In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2 (0.0 ≤ x ≤ 0.5) hydroxyapatites , 2011 .

[28]  M. Mitrić,et al.  Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering , 2011 .

[29]  K. Venkateswarlu,et al.  X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis , 2010 .

[30]  J. Kolmas,et al.  Mid-infrared reflectance microspectroscopy of human molars: Chemical comparison of the dentin–enamel junction with the adjacent tissues , 2010 .

[31]  John A. Wright,et al.  Interaction of staphylococci with bone , 2010, International journal of medical microbiology : IJMM.

[32]  S. Dorozhkin Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine , 2009, Materials.

[33]  Y. Park,et al.  Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli , 2008, Applied and Environmental Microbiology.

[34]  J. Kolmas,et al.  Concentration of hydroxyl groups in dental apatites: a solid-state 1H MAS NMR study using inverse 31P -->1H cross-polarization. , 2007, Chemical communications.

[35]  T. SAMPATH KUMAR,et al.  Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. , 2007, Journal of biomedical materials research. Part A.

[36]  J. Pasteris,et al.  A mineralogical perspective on the apatite in bone , 2005 .

[37]  Milenko Markovic,et al.  Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material , 2004, Journal of research of the National Institute of Standards and Technology.

[38]  E. Landi,et al.  Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. , 2004, Biomaterials.

[39]  F. Cui,et al.  A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. , 2000, Journal of biomedical materials research.

[40]  E. Landi,et al.  Densification behaviour and mechanisms of synthetic hydroxyapatites , 2000 .

[41]  W. Bonfield,et al.  Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. , 1998, Journal of biomedical materials research.

[42]  I. E. Ruyter,et al.  Quantitative Determination of Type A and Type B Carbonate in Human Deciduous and Permanent Enamel by Means of Fourier Transform Infrared Spectrometry , 1997, Advances in dental research.

[43]  A. D. Russell,et al.  Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. , 1994, The Journal of hospital infection.