Density Hales-Jewett and Moser Numbers
暂无分享,去创建一个
[1] K. F. Roth. On Certain Sets of Integers , 1953 .
[2] Tim Austin,et al. Deducing the Density Hales–Jewett Theorem from an Infinitary Removal Lemma , 2009, 0903.1633.
[3] H. Furstenberg,et al. A density version of the Hales-Jewett theorem , 1991 .
[4] S. R. Simanca,et al. On Circulant Matrices , 2012 .
[5] M. Narasimha Murty,et al. Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.
[6] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[7] Michael Elkin. An improved construction of progression-free sets , 2010, SODA '10.
[8] Aaron Potechin. Maximal caps in AG (6, 3) , 2008, Des. Codes Cryptogr..
[9] J. Beck. Combinatorial Games: Tic-Tac-Toe Theory , 2008 .
[10] A. K. Chandra. On the Solution of Moser's Problem in Four Dimensions , 1973, Canadian Mathematical Bulletin.
[11] R. A. Rankin,et al. XXIV.—Sets of Integers Containing not more than a Given Number of Terms in Arithmetical Progression , 1961, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[12] V. Chvatal,et al. Remarks on a Problem of Moser , 1972, Canadian Mathematical Bulletin.
[13] F. Behrend. On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.
[14] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[15] Michael Elkin. An improved construction of progression-free sets , 2010, SODA 2010.
[16] Saharon Shelah,et al. Primitive recursive bounds for van der Waerden numbers , 1988 .
[17] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[18] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[19] Julia Wolf,et al. A Note on Elkin’s Improvement of Behrend’s Construction , 2010 .
[20] D. Polymath,et al. A new proof of the density Hales-Jewett theorem , 2009, 0910.3926.
[21] Y. Katznelson,et al. A density version of the Hales-Jewett theorem for k=3 , 1989, Discret. Math..
[22] Knut Bahr,et al. Solution to problem 8 , 1975, SIGS.
[23] Franz Rothlauf,et al. Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.
[24] Kevin O'Bryant,et al. Sets of Integers that do not Contain Long Arithmetic Progressions , 2008, Electron. J. Comb..