Direct Plasmon-Driven Photoelectrocatalysis.

Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies.1-3 Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts,4 (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances.

[1]  Lunkenheimer,et al.  Correlated barrier hopping in NiO films. , 1991, Physical review. B, Condensed matter.

[2]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[3]  W. Lee,et al.  Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. , 2014, Chemical reviews.

[4]  I. Thomann,et al.  Ultrathin AAO Membrane as a Generic Template for Sub-100 nm Nanostructure Fabrication , 2016 .

[5]  Robert P. H. Chang,et al.  Structural and Electrical Functionality of NiO Interfacial Films in Bulk Heterojunction Organic Solar Cells , 2011 .

[6]  Zhipeng Huang,et al.  Sub-20 nm Si/Ge superlattice nanowires by metal-assisted etching. , 2009, Nano letters.

[7]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[8]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[9]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[10]  T. Yanagishita,et al.  Anodic Porous Alumina Masks with Checkerboard Pattern , 2010 .

[11]  Zhiyong Fan,et al.  Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics , 2014, Scientific Reports.

[12]  Ricardo Ruiz,et al.  Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. , 2013, Nano letters.

[13]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[14]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[15]  E. Stach,et al.  Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. , 2014, Angewandte Chemie.

[16]  Langis Roy,et al.  Schottky-contact plasmonic dipole rectenna concept for biosensing. , 2013, Optics express.

[17]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[18]  Hideki Masuda,et al.  Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask , 1996 .

[19]  J. Prikulis,et al.  Ultrathin Anodic Aluminum Oxide Membranes for Production of Dense Sub-20 nm Nanoparticle Arrays , 2014 .

[20]  Tianquan Lian,et al.  Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. , 2013, Nano letters.

[21]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[22]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[23]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[24]  Isaacson,et al.  Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. , 1992, Physical review. B, Condensed matter.

[25]  M. Engelhard,et al.  Surface plasmon-driven water reduction: gold nanoparticle size matters. , 2014, Journal of the American Chemical Society.

[26]  P. Solanki,et al.  Nanostructured metal oxide-based biosensors , 2011 .

[27]  G. Konstantatos,et al.  Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors , 2015 .

[28]  Y. Lei,et al.  Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. , 2014, ACS nano.

[29]  G. Meng,et al.  Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates , 2015, Nano Research.

[30]  Hui Zhang,et al.  Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement , 2014 .

[31]  D. Nesbitt,et al.  Multiphoton Scanning Photoionization Imaging Microscopy for Single-Particle Studies of Plasmonic Metal Nanostructures , 2011 .

[32]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[33]  S. Cronin,et al.  Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts. , 2014, Physical chemistry chemical physics : PCCP.

[34]  Phillip Christopher,et al.  Direct Photocatalysis by Plasmonic Nanostructures , 2014 .

[35]  R. Devan,et al.  An efficient methodology for measurement of the average electrical properties of single one-dimensional NiO nanorods , 2013, Scientific Reports.

[36]  H. Low,et al.  Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography. , 2010, ACS nano.

[37]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[38]  Vinay Gupta,et al.  Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles , 2013, Nanotechnology.

[39]  T. Torimoto,et al.  Plasmon-Enhanced Photocatalytic Activity of Cadmium Sulfide Nanoparticle Immobilized on Silica-Coated Gold Particles , 2011 .

[40]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[41]  Soo Jin Chua,et al.  Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures , 2006 .

[42]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[43]  Y. Lei,et al.  Facile Transferring of Wafer-Scale Ultrathin Alumina Membranes onto Substrates for Nanostructure Patterning. , 2015, ACS nano.

[44]  Jang‐Sik Lee,et al.  Highly scalable resistive switching memory cells using pore-size-controlled nanoporous alumina templates , 2012 .

[45]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[46]  Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films , 2002 .

[47]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .

[48]  Sungho Jin,et al.  Nickel oxide functionalized silicon for efficient photo-oxidation of water , 2012 .

[49]  M. Langell,et al.  Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS , 2012 .

[50]  Carl Hägglund,et al.  Plasmonic Near-Field Absorbers for Ultrathin Solar Cells. , 2012, The journal of physical chemistry letters.

[51]  P. Kamat Photovoltaics: capturing hot electrons. , 2010, Nature chemistry.

[52]  Wei Li,et al.  Metamaterial perfect absorber based hot electron photodetection. , 2014, Nano letters.

[53]  Xiaomiao Feng,et al.  Template electrosynthesis of tailored-made helical nanoswimmers. , 2014, Nanoscale.

[54]  T. Yanagishita,et al.  Facile and scalable patterning of sublithographic scale uniform nanowires by ultra-thin AAO free-standing membrane , 2012 .

[55]  Minghong Wu,et al.  Ultrathin alumina membranes for surface nanopatterning in fabricating quantum-sized nanodots. , 2010, Small.

[56]  Suljo Linic,et al.  Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. , 2011, Journal of the American Chemical Society.

[57]  Yiying Wu,et al.  Composite mesostructures by nano-confinement , 2004, Nature materials.

[58]  Pierre Berini,et al.  Surface plasmon photodetectors and their applications , 2014 .

[59]  X. Xia,et al.  Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. , 2015, Journal of the American Chemical Society.

[60]  J. Baumberg,et al.  Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting , 2015, The journal of physical chemistry letters.

[61]  K. Gilroy,et al.  Seeing is believing: hot electron based gold nanoplasmonic optical hydrogen sensor. , 2014, ACS nano.

[62]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[63]  Dusan Losic,et al.  Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications , 2013 .

[64]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[65]  Zhili Xiao,et al.  Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[66]  Ming Lun Tseng,et al.  Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. , 2012, ACS nano.

[67]  Yimin Kang,et al.  Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. , 2015, Nanoscale.

[68]  Goutham Ezhilarasu,et al.  Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS₂ and Metal/WSe₂ Heterojunctions. , 2015, Nano letters.

[69]  Jeong Y. Park,et al.  Hot Electron and Surface Plasmon-Driven Catalytic Reaction in Metal–Semiconductor Nanostructures , 2014, Catalysis Letters.

[70]  M. Moskovits The case for plasmon-derived hot carrier devices. , 2015, Nature nanotechnology.

[71]  Sang Ho Lee,et al.  Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. , 2014, ACS nano.

[72]  P. Nordlander,et al.  Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. , 2014, Journal of the American Chemical Society.

[73]  D. Nesbitt,et al.  Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods. , 2011, ACS nano.

[74]  Joyeeta Nag,et al.  Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. , 2014, Nano letters.

[75]  Chad A Mirkin,et al.  On-wire lithography: synthesis, encoding and biological applications , 2009, Nature Protocols.

[76]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[77]  Jiangtian Li,et al.  Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array , 2013, Nature Communications.

[78]  Mark L Brongersma,et al.  Hot-electron photodetection with a plasmonic nanostripe antenna. , 2014, Nano letters.

[79]  Jiangtian Li,et al.  Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. , 2012, Journal of the American Chemical Society.

[80]  Qing Huang,et al.  Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs , 2013 .

[81]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[82]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[83]  Qing Huang,et al.  Gap-tunable Ag-nanorod arrays on alumina nanotip arrays as effective SERS substrates , 2013 .

[84]  G. Baffou,et al.  Nanoplasmonics for Chemistry , 2014 .

[85]  Y. Lei,et al.  Synchronous Formation of ZnO/ZnS Core/Shell Nanotube Arrays with Removal of Template for Meliorating Photoelectronic Performance , 2015 .