Liquid crystal integrated metalens with tunable chromatic aberration

Abstract. Overcoming chromatic aberrations is a vital concern in imaging systems in order to facilitate full-color and hyperspectral imaging. By contrast, large dispersion holds opportunities for spectroscopy and tomography. Combining both functions into a single component will significantly enhance its versatility. A strategy is proposed to delicately integrate two lenses with a static resonant phase and a switchable geometric phase separately. The former is a metasurface lens with a linear phase dispersion. The latter is composed of liquid crystals (LCs) with space-variant orientations with a phase profile that is frequency independent. By this means, a broadband achromatic focusing from 0.9 to 1.4 THz is revealed. When a saturated bias is applied on LCs, the geometric phase modulation vanishes, leaving only the resonant phase of the metalens. Correspondingly, the device changes from achromatic to dispersive. Furthermore, a metadeflector with tunable dispersion is demonstrated to verify the universality of the proposed method. Our work may pave a way toward active metaoptics, promoting various imaging applications.

[1]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[2]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[3]  Lei Wang,et al.  Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations. , 2018, Optics letters.

[4]  Din Ping Tsai,et al.  Metalenses: Advances and Applications , 2018, Advanced Optical Materials.

[5]  T. Zentgraf,et al.  Beam switching and bifocal zoom lensing using active plasmonic metasurfaces , 2017, Light: Science & Applications.

[6]  Qiang Kan,et al.  A broadband terahertz ultrathin multi-focus lens , 2016, Scientific Reports.

[7]  Din Ping Tsai,et al.  Advances in optical metasurfaces: fabrication and applications [Invited]. , 2018, Optics express.

[8]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[9]  Andrea Alù,et al.  A Reconfigurable Active Huygens' Metalens. , 2017, Advanced materials.

[10]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[11]  Qiang Kan,et al.  An ultrathin terahertz lens with axial long focal depth based on metasurfaces. , 2013, Optics express.

[12]  Philippe Lalanne,et al.  Metalenses at visible wavelengths: past, present, perspectives , 2016 .

[13]  Andrei Gorodetsky,et al.  Enhancement of terahertz photoconductive antenna operation by optical nanoantennas (Laser Photonics Rev. 11(1)/2017) , 2017 .

[14]  Yongtian Wang,et al.  Graphene-enabled electrically controlled terahertz meta-lens , 2018, Photonics Research.

[15]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[16]  C. H. Chu,et al.  Achromatic metalens array for full-colour light-field imaging , 2019, Nature Nanotechnology.

[17]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[18]  Din Ping Tsai,et al.  Spectral tomographic imaging with aplanatic metalens , 2019, Light: Science & Applications.

[19]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[20]  Wei Hu,et al.  Liquid crystal enabled dynamic cloaking of terahertz Fano resonators , 2019, Applied Physics Letters.

[21]  N. Yu,et al.  Broadband achromatic dielectric metalenses , 2018, Light, science & applications.

[22]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[23]  B. Ferguson,et al.  T-ray computed tomography. , 2002, Optics letters.

[24]  Jianqiang Gu,et al.  Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control , 2017 .

[25]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[26]  Xiao Liang,et al.  Large birefringence liquid crystal material in terahertz range , 2012 .

[27]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[28]  Wei Gao,et al.  Digitalizing Self‐Assembled Chiral Superstructures for Optical Vortex Processing , 2018, Advanced materials.

[29]  Wei Hu,et al.  Planar Terahertz Photonics Mediated by Liquid Crystal Polymers , 2020, Advanced Optical Materials.

[30]  Wei Hu,et al.  Liquid crystal tunable terahertz lens with spin-selected focusing property. , 2019, Optics express.

[31]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[32]  Xiao Liang,et al.  Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes , 2015, Light: Science & Applications.

[33]  Andrei Faraon,et al.  Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces , 2015, Nature Communications.

[34]  J. Osmond,et al.  Electrically Driven Varifocal Silicon Metalens , 2018, ACS Photonics.

[35]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[36]  K. Neyts,et al.  Multi-electrode tunable liquid crystal lenses with one lithography step. , 2018, Optics letters.

[37]  Xiao-Ning Pang,et al.  A broadband achromatic metalens array for integral imaging in the visible , 2019, Light: Science & Applications.

[38]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[39]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[40]  Guo-Dung J Su,et al.  Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. , 2020, Optics express.

[41]  Wei Hu,et al.  Broadband achromatic metalens in Terahertz regime , 2019, 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).

[42]  Federico Capasso,et al.  A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures , 2018, Nature Communications.

[43]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[44]  Peng Chen,et al.  Chirality invertible superstructure mediated active planar optics , 2019, Nature Communications.

[45]  Robert E. Miles,et al.  Terahertz Time-Domain Spectroscopy for Material Characterization , 2007, Proceedings of the IEEE.

[46]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[47]  Xiaomei Yu,et al.  Transmissive terahertz metalens with full phase control based on a dielectric metasurface. , 2017, Optics letters.

[48]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[49]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[50]  Wei Ting Chen,et al.  Polarization-Insensitive Metalenses at Visible Wavelengths. , 2016, Nano letters.

[51]  Nikolay I. Zheludev,et al.  All-dielectric phase-change reconfigurable metasurface , 2016, 1604.01330.