Demand responsive pricing and competitive spectrum allocation via a spectrum server

In this paper we develop a framework for competition of future operators likely to operate in a mixed commons/property-rights regime under the regulation of a spectrum policy server (SPS). The operators dynamically compete for customers as well as portions of available spectrum. The operators are charged by the SPS for the amount of bandwidth they use in their services. Through demand responsive pricing, the operators try to come up with convincing service offers for the customers, while trying to maximize their profits. We first consider a single-user system as an illustrative example. We formulate the competition between the operators as a non-cooperative game and propose an SPS-based iterative bidding scheme that results in a Nash equilibrium of the game. Numerical results suggest that, competition increases the user's (customer's) acceptance probability of the offered service, while reducing the profits achieved by the operators. It is also observed that as the cost of unit bandwidth increases relative to the cost of unit infrastructure (fixed cost), the operator with superior technology (higher fixed cost) becomes more competitive. We then extend the framework to a multiuser setting where the operators are competing for a number of users at once. We propose an SPS-based bandwidth allocation scheme in which the SPS optimally allocates bandwidth portions for each user-operator session to maximize its overall expected revenue resulting from the operator payments. Comparison of the performance of this scheme to one in which the bandwidth is equally shared between the user-operator pairs reveals that such an SPS-based scheme improves the user acceptance probabilities and the bandwidth utilization in multiuser systems

[1]  H. Varian Intermediate Microeconomics: A Modern Approach , 1987 .

[2]  Cem U. Saraydar,et al.  Efficient power control via pricing in wireless data networks , 2002, IEEE Trans. Commun..

[3]  Leonardo Badia,et al.  Demand and pricing effects on the radio resource allocation of multimedia communication systems , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[4]  Peter Karlsson,et al.  Relation between base station characteristics and cost structure in cellular systems , 2004, 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754).

[5]  Jon M. Peha,et al.  Approaches to spectrum sharing , 2005, IEEE Communications Magazine.

[6]  Magnus Lindström,et al.  Demand Responsive Resource Management for Cellular Networks , 2005 .

[7]  Gerald R. Faulhaber The Question of Spectrum: Technology, Management, and Regime Change , 2005, J. Telecommun. High Technol. Law.

[8]  Milind M. Buddhikot,et al.  DIMSUMnet: new directions in wireless networking using coordinated dynamic spectrum , 2005, Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks.