Frequency-Domain Criteria for Global Synchronization of multiscroll Chaotic Systems under Linear Feedback Control

This paper provides a unified approach for achieving and analyzing global synchronization of a class of master-slave coupled multiscroll chaotic systems under linear state-error feedback control. A general mathematical model for such a class of multiscroll chaotic systems is first established. Based on some special properties of such systems, two less-conservative frequency-domain criteria for the desirable global synchronization are rigorously proven by means of the absolute stability theory. The analysis is then applied to two master-slave coupled modified Chua's circuits, obtaining the corresponding simple and precise algebraic criteria for global synchronization, which are finally verified by numerical simulations.

[1]  Kim-Fung Man,et al.  Digitized n-scroll attractor model for secure communications , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[2]  E. E. García-Guerrero,et al.  Synchronization of Chua’s circuits with multi-scroll attractors: Application to communication , 2009 .

[3]  Guanrong Chen,et al.  Theoretical Design and Circuit Implementation of Multidirectional Multi-Torus Chaotic Attractors , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Xinghuo Yu,et al.  Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method , 2004, Autom..

[5]  Guanrong Chen,et al.  Generating chaos with a switching piecewise-linear controller. , 2002, Chaos.

[6]  Johan A. K. Suykens,et al.  Quasilinear approach to nonlinear systems and the design of n-double scroll (n=1, 2, 3, 4, . . .) , 1991 .

[7]  Leon O. Chua,et al.  A family of n-scroll attractors from a generalized Chua's circuit , 1997 .

[8]  Ahmed S. Elwakil,et al.  n-scroll chaos generator using nonlinear transconductor , 2002 .

[9]  Yong Chen,et al.  Generalized Q-S (lag, anticipated and complete) synchronization in modified Chua's circuit and Hindmarsh-Rose systems , 2006, Appl. Math. Comput..

[10]  M. M. El-Dessoky,et al.  Adaptive synchronization for four-scroll attractor with fully unknown parameters , 2006 .

[11]  Qingdu Li,et al.  Generate n-scroll attractor in linear system by scalar output feedback , 2003 .

[12]  Jitao Sun,et al.  Impulsive Control of n-scroll Grid attractors , 2004, Int. J. Bifurc. Chaos.

[13]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[14]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[15]  Emily Stone,et al.  The proto-Lorenz system , 1993 .

[16]  Johan A. K. Suykens,et al.  Experimental confirmation of a nonlinear Hinfty synchronization scheme with 5-scroll attractors , 1999 .

[17]  Guanrong Chen,et al.  Generation of n-scroll attractors via sine function , 2001 .

[18]  Guanrong Chen,et al.  Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control , 2007, 0807.2107.

[19]  Guo-Ping Jiang,et al.  A Global Synchronization Criterion for Coupled Chaotic Systems via Unidirectional Linear Error Feedback Approach , 2002, Int. J. Bifurc. Chaos.

[20]  Luigi Fortuna,et al.  Implementation and synchronization of 3x3 grid scroll chaotic circuits with analog programmable devices. , 2006, Chaos.

[21]  Murat Akgül,et al.  A switching synchronization scheme for a class of chaotic systems , 2002 .

[22]  M. A. Aziz-Alaoui,et al.  Differential Equations with Multispiral Attractors , 1999 .

[23]  Guanrong Chen,et al.  A New Chaotic System and its Generation , 2003, Int. J. Bifurc. Chaos.

[24]  Giuseppe Grassi,et al.  Hyperchaotic Coupled Chua Circuits: an Approach for Generating New n×m-scroll attractors , 2003, Int. J. Bifurc. Chaos.

[25]  J. P. Lasalle,et al.  Absolute Stability of Regulator Systems , 1964 .

[26]  J. Suykens,et al.  Generation of n-double scrolls (n=1, 2, 3, 4,...) , 1993 .

[27]  Sun Fengyun,et al.  Global Chaos Synchronization between Two New Different Chaotic Systems via Active Control , 2006 .

[28]  Xinghuo Yu,et al.  Design and analysis of multiscroll chaotic attractors from saturated function series , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Yu Si-Min,et al.  A family of multiple-folded torus chaotic attractors , 2005 .

[30]  Heng-Hui Chen Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control , 2009 .

[31]  孙丰云 Global Chaos Synchronization between Two New Different Chaotic Systems via Active Control , 2006 .

[32]  Jitao Sun,et al.  Impulsive control of a new chaotic system , 2004, Math. Comput. Simul..

[33]  Yu Si-Min,et al.  Generation and synchronization of N-scroll chaotic and hyperchaotic attractors in fourth-order systems , 2004 .

[34]  M.A. Aziz-Alaoui Multispiral chaos , 2000, 2000 2nd International Conference. Control of Oscillations and Chaos. Proceedings (Cat. No.00TH8521).

[35]  Akio Ushida,et al.  Chaotic itinerancy phenomena on coupled n-double scrolls chaotic circuits , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[36]  Henry Leung,et al.  Design and implementation of n-scroll chaotic attractors from a general jerk circuit , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  Jinhu Lu,et al.  Generating multi-scroll chaotic attractors by thresholding , 2008 .

[38]  Johan A. K. Suykens,et al.  Families of scroll Grid attractors , 2002, Int. J. Bifurc. Chaos.