Determination of the Critical Slip Surface Using Artificial Fish Swarms Algorithm

The writers have come across a difficult stability analysis problem where there are several “strong” local minima. Several well known heuristic global minimum methods fail to locate the global minimum for this case, and the writers finally adopt the artificial fish swarms algorithm to overcome this difficult problem. This optimization algorithm is demonstrated to be effective and efficient for normal problems. To illustrate the effectiveness of the proposed algorithm, three difficult examples are considered. The sensitivity of the proposed algorithm with respect to the parameters used for the global optimization algorithm will also be investigated in this paper.

[1]  R. A. Fisher,et al.  Statistical Tables for Biological, Agricultural and Medical Research , 1956 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  R. Lewis,et al.  Associated and non-associated visco-plasticity and plasticity in soil mechanics , 1975 .

[4]  R. Baker,et al.  THEORETICAL ANALYSIS OF THE STABILITY OF SLOPES , 1978 .

[5]  R. Baker,et al.  Determination of the critical slip surface in slope stability computations , 1980 .

[6]  D. Naylor,et al.  Finite Elements and Slope Stability , 1982 .

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  K. Arai,et al.  DETERMINATION OF NONCIRCULAR SLIP SURFACE GIVING THE MINIMUM FACTOR OF SAFETY IN SLOPE STABILITY ANALYSIS , 1985 .

[9]  Van Uu Nguyen,et al.  Determination of Critical Slope Failure Surfaces , 1985 .

[10]  Zu-yu Chen,et al.  Evaluation of minimum factor of safety in slope stability analysis , 1988 .

[11]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[12]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[13]  V. R. Greco EFFICIENT MONTE CARLO TECHNIQUE FOR LOCATING CRITICAL SLIP SURFACE , 1996 .

[14]  Takuo Yamagami,et al.  A Search for the Critical Slip Surface in Three-Dimensional Slope Stability Analysis , 1997 .

[15]  D. V. Griffiths,et al.  SLOPE STABILITY ANALYSIS BY FINITE ELEMENTS , 1999 .

[16]  Abdallah I. Husein Malkawi,et al.  Global Search Method for Locating General Slip Surface Using Monte Carlo Techniques , 2001 .

[17]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[18]  Hermanus P. J. Bolton,et al.  Global search for critical failure surface in slope stability analysis , 2003 .

[19]  Y. M. Cheng,et al.  Location of critical failure surface and some further studies on slope stability analysis , 2003 .

[20]  Andrew C. Heath,et al.  Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis , 2005 .

[21]  Y. M. Cheng,et al.  Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods , 2007 .

[22]  Manuel Laguna,et al.  Tabu Search , 1997 .