Thickness dependence of electronic phase transitions in epitaxial V2O3 films on (0001) LiTaO3

Single crystal epitaxial thin films of V2O3 were grown on (0001) LiTaO3 by pulsed laser deposition. X-ray diffraction and atomic force microscopy data show that the deposits were initially pseudomorphic, that they underwent plastic relaxation at a critical thickness of ≈16 nm, and that relaxation is accompanied by the development of surface roughness, increasing with deposit thickness. These effects lead to changes in electrical properties of the films as a function of temperature. As film thickness increases the properties go from insulator-insulator to metal-insulator, then metal-metal transitions. The thickest films (>200 nm) remained metallic over the temperature range of the measurements.

[1]  P. Limelette,et al.  Strain-induced pressure effect in pulsed laser deposited thin films of the strongly correlated oxide V 2 O 3 , 2006, cond-mat/0609342.

[2]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[3]  S. Franssila,et al.  Thin Solid Films , 2009 .

[4]  Arata Tanaka,et al.  Spin and orbital occupation and phase transitions in V2O3 , 2000 .

[5]  I. Yamaguchi,et al.  Preparation of epitaxial V2O3 films on C-, A- and R-planes of α-Al2O3 substrates by coating-pyrolysis process , 2000 .

[6]  M. Vaudin,et al.  Effect of the electrode layer on the polydomain structure of epitaxial PbZr0.2Ti0.8O3 thin films , 1999 .

[7]  Deborah P. Partlow,et al.  Switchable vanadium oxide films by a sol‐gel process , 1991 .

[8]  J. P. Remeika,et al.  Electronic Specific Heat of Metallic Ti-Doped V 2 O 3 , 1971 .

[9]  R. Perkins,et al.  A New PTC Resistor for Power Applications , 1982 .

[10]  M. Marezio,et al.  Crystal Structure of the Low-Temperature Antiferromagnetic Phase of V 2 O 3 , 1970 .

[11]  R. Beanland,et al.  A study of surface cross-hatch and misfit dislocation structure in In0.15Ga0.85As/GaAs grown by chemical beam epitaxy , 1995 .

[12]  Z. Hiroi,et al.  Epitaxial strain effects on the metal–insulator transition in V2O3 thin films , 2004 .

[13]  S. Alpay,et al.  Resistivity of V2O3 thin films deposited on a-plane (110) and c-plane (001) sapphire by pulsed laser deposition , 2008 .

[14]  A. G. Cullis,et al.  Growth ripples upon strained SiGe epitaxial layers on Si and misfit dislocation interactions , 1994 .

[15]  E. Wang,et al.  Thickness-dependent metal–insulator transition in V2O3 ultrathin films , 2004 .

[16]  James S. Speck,et al.  DOMAIN CONFIGURATIONS DUE TO MULTIPLE MISFIT RELAXATION MECHANISMS IN EPITAXIAL FERROELECTRIC THIN FILMS. I: THEORY , 1994 .

[17]  C. Tusche,et al.  Structural and electronic properties of epitaxial V2O3 thin films , 2004 .

[18]  R. Newnham,et al.  Metal oxide-polymer thermistors , 1989 .

[19]  S. Horn,et al.  Influence of strain on the electronic properties of epitaxial V2O3 thin films , 1997 .

[20]  R. Frésard,et al.  Thickness dependence of the electronic properties in V2O3 thin films , 2007, 0709.0692.

[21]  A. Frenkel,et al.  Growth of V_2O_3 thin films on a-plane (110) and c-plane (001) sapphire via pulsed-laser deposition , 2007 .

[22]  J. P. Remeika,et al.  Metal-Insulator Transition in(V1−xCrx)2O3 , 1970 .