Comets in the near-Earth object population

Abstract Because the lifespan of near-Earth objects (NEOs) is shorter than the age of the Solar System, these objects originate elsewhere. Their most likely sources are the main asteroid belt and comets. Through physical observations we seek to identify potential dormant or extinct comets among “asteroids” catalogued as NEOs and thereby determine the fraction of “comet candidates” within the total NEO population. Both discovery statistics and dynamical models indicate that candidate cometary objects in near-Earth space are predominantly found among those having a jovian Tisserand parameter T j 3 . Therefore, we seek to identify comet candidates among asteroid-like NEOs using three criteria: T j 3 , spectral parameters (C, D, T, or P taxonomic types), and/or low ( T j 3 , consisting of visible spectra, near-infrared spectra, and/or albedo measurements obtained using the NASA Infrared Telescope Facility, the Kitt Peak National Observatory 4 m, and the Magellan Observatory 6.5-m. Four of our “asteroid” targets have been subsequently confirmed as low activity comets. Thus our sample includes spectra of the nuclei of Comets 2002 EX12 = 169P (NEAT), 2001 WF2 = 182P (LONEOS), 2003 WY25 = D/1891 W1 (Blanplain), and Halley Family Comet 2006 HR30 = P/2006 HR30 (Siding Spring). From the available literature, we tabulate physical properties for 55 NEOs having T j 3 , and after accounting for possible bias effects, we estimate that 54 ± 10 % of NEOs in T j 3 orbits have “comet-like” spectra or albedos. Bias corrected discovery statistics [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295–311] estimate 30 ± 5 % of the entire NEO population resides in orbits having T j 3 . Combining these two factors suggests that 16 ± 5 % of the total discovered “asteroid-like” NEO population has “comet-like” dynamical and physical properties. Outer main-belt asteroids typically have similar taxonomic and albedo properties as our “comet candidates.” Using the model of Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399–433] to evaluate source region probabilities, we conclude that 8 ± 5 % of the total asteroid-like NEO population have the requisite orbital properties, physical properties, and dynamical likelihood to have originated as comets from the outer Solar System.

[1]  Richard P. Binzel,et al.  Constraining near-Earth object albedos using near-infrared spectroscopy , 2005 .

[2]  P. Lamy,et al.  The sizes, shapes, albedos, and colors of cometary nuclei , 2004 .

[3]  I. Williams,et al.  The Geminid meteor stream and asteroid 3200 Phaethon , 1993 .

[4]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[5]  R. J. Hanisch,et al.  Astronomical Data Analysis Software and Systems X , 2014 .

[6]  Richard P. Binzel,et al.  Keck observations of near-Earth asteroids in the thermal infrared , 2003 .

[7]  F. DeMeo DeMeo taxonomy : categorization of asteroids in the near-infrared , 2007 .

[8]  J. Licandro,et al.  Nuclear Spectra of Comet 162P/Siding Spring (2004 TU12) , 2006 .

[9]  David Jewitt COMET D/1819 W1 (BLANPAIN): NOT DEAD YET , 2006 .

[10]  David Jewitt,et al.  From Kuiper Belt Object to Cometary Nucleus: The Missing Ultrared Matter , 2002 .

[11]  D. Campbell,et al.  Radar observations of asteroid 1999 JM8 , 2001 .

[12]  D. Jewitt,et al.  LOW ALBEDOS AMONG EXTINCT COMET CANDIDATES , 2001, astro-ph/0104478.

[13]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[14]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[15]  D. Jewitt A First Look at the Damocloids , 2005 .

[16]  S. Lord A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation , 1992 .

[17]  P. Jenniskens,et al.  Meteor Showers from the Debris of Broken Comets: D/1819 W1 (Blanpain), 2003 WY25, and the Phoenicids , 2005 .

[18]  L. Lara,et al.  Near-infrared spectroscopy of the nucleus of comet 124P/Mrkos , 2003 .

[19]  F. Whipple 1983 TB and the Geminid Meteors , 1983 .

[20]  Harold F. Levison,et al.  Evolution of comets into asteroids , 1989 .

[21]  J. Licandro,et al.  Spectral analysis and mineralogical characterization of 11 olivine–pyroxene rich NEAs , 2006 .

[22]  David Jewitt,et al.  Albedos of Asteroids in Comet-Like Orbits , 2005 .

[23]  James G. Williams,et al.  The positions of secular resonance surfaces , 1981 .

[25]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[26]  Richard P. Binzel,et al.  Bias-corrected population, size distribution, and impact hazard for the near-Earth objects , 2004 .

[27]  M. Serra-Ricart,et al.  Multi-wavelength spectral study of asteroids in cometary orbits , 2006 .

[28]  William Herschel,et al.  VIII. Observations on the two lately discovered celestial bodies , 1802, Philosophical Transactions of the Royal Society of London.

[29]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[30]  Richard P. Binzel,et al.  Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML , 2001 .

[31]  S. Larson,et al.  Near-Earth Asteroid Search Programs , 2002 .

[32]  Uwe Fink,et al.  THE UNUSUAL SPECTRA OF 15 NEAR-EARTH ASTEROIDS AND EXTINCT COMET CANDIDATES , 1998 .

[33]  D. Jewitt From cradle to grave: the rise and demise of the comets , 2004 .

[34]  X. Zhou,et al.  Photometry and Spectroscopy of the Potentially Hazardous Asteroid 2001 YB5 and Near-Earth Asteroid 2001 TX16 , 2003 .

[35]  D. Matson,et al.  Radiometry of near-earth asteroids. , 1989, The Astronomical journal.

[36]  Arlo U. Landolt,et al.  UBVRI Photometric standard stars around the celestial equator. , 1983 .

[37]  J. Williams,et al.  A Three-Parameter Asteroid Taxonomy , 1989 .

[38]  Richard P. Binzel,et al.  MUSES‐C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite , 2001 .

[39]  Harold F. Levison,et al.  On the origin of the unusual orbit of Comet 2P/Encke , 2006 .

[40]  J. Adams,et al.  Comet 162P/Siding Spring: A Surprisingly Large Nucleus , 2006, astro-ph/0608387.

[41]  J. Licandro,et al.  The nature of comet-asteroid transition object (3200) Phaethon , 2007 .

[42]  R. Goldstein,et al.  Radar observations of asteroid 1986 JK , 1989 .

[43]  L. Lebofsky,et al.  Radiometry and a thermal modeling of asteroids , 1989 .

[44]  George W. Wetherill,et al.  Where do the Apollo objects come from , 1988 .

[45]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[46]  Gautham Narayan,et al.  Physical characteristics of Comet Nucleus C/2001 OG108 (LONEOS) , 2005 .

[47]  Jack Wisdom,et al.  Meteorites may follow a chaotic route to Earth , 1985, Nature.

[48]  D. Tody,et al.  IRAF in the Nineties , 1992 .

[49]  N. Belyaev The Role of the Researches of E.I. Kazimirchak-Polonskaya on the Dynamical Evolution of Short-Period Comets , 1985 .

[50]  D. Matson,et al.  Classification of IRAS asteroids , 1989 .

[51]  A. Landolt,et al.  UBV photoelectric sequences in the celestial equatorial Selected Areas 92-115 , 1973 .

[52]  Schelte J. Bus,et al.  Compositional structure in the asteroid belt: Results of a spectroscopic survey , 1999 .