Comparative approaches to escape

Neural circuits mediating visually evoked escape behaviors are promising systems in which to dissect the neural basis of behavior. Behavioral responses to predator-like looming stimuli, and their underlying neural computations, are remarkably similar across species. Recently, genetic tools have been applied in this classical paradigm, revealing novel non-cortical pathways that connect loom processing to defensive behaviors in mammals and demonstrating that loom encoding models from locusts also fit vertebrate neural responses. In both invertebrates and vertebrates, relative spike-timing in descending pathways is a mechanism for escape behavior choice. Current findings suggest that experimentally tractable systems, such as Drosophila, may be applicable models for sensorimotor processing and persistent states in higher organisms.

[1]  A. Leonardo,et al.  A spike-timing mechanism for action selection , 2014, Nature Neuroscience.

[2]  Herwig Baier,et al.  A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish , 2015, Current Biology.

[3]  F. Claire Rind,et al.  Predator versus Prey: Locust Looming-Detector Neuron and Behavioural Responses to Stimuli Representing Attacking Bird Predators , 2012, PloS one.

[4]  Yong-Jun Liu,et al.  Neuronal Responses to Looming Objects in the Superior Colliculus of the Cat , 2011, Brain, Behavior and Evolution.

[5]  T. Porkka-Heiskanen,et al.  Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. , 2014, Journal of neurophysiology.

[6]  Shurong Wang,et al.  Tectal neurons signal impending collision of looming objects in the pigeon , 2005, The European journal of neuroscience.

[7]  Michael O'Shea,et al.  The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neurone , 1974, Journal of comparative physiology.

[8]  Yoshifumi Yamawaki,et al.  Role of a looming-sensitive neuron in triggering the defense behavior of the praying mantis Tenodera aridifolia. , 2014, Journal of neurophysiology.

[9]  F. Gabbiani,et al.  A novel neuronal pathway for visually guided escape in Drosophila melanogaster. , 2009, Journal of neurophysiology.

[10]  M. Dickinson,et al.  Performance trade-offs in the flight initiation of Drosophila , 2008, Journal of Experimental Biology.

[11]  Xintian Hu,et al.  Processing of visually evoked innate fear by a non-canonical thalamic pathway , 2015, Nature Communications.

[12]  Jianhua Cang,et al.  Visual Cortex Modulates the Magnitude but Not the Selectivity of Looming-Evoked Responses in the Superior Colliculus of Awake Mice , 2014, Neuron.

[13]  David N. Lee,et al.  A Theory of Visual Control of Braking Based on Information about Time-to-Collision , 1976, Perception.

[14]  Fabrizio Gabbiani,et al.  Collision detection as a model for sensory-motor integration. , 2011, Annual review of neuroscience.

[15]  D. Tomsic,et al.  Behaviorally Related Neural Plasticity in the Arthropod Optic Lobes , 2013, Current Biology.

[16]  M. Dickinson,et al.  Visually Mediated Motor Planning in the Escape Response of Drosophila , 2008, Current Biology.

[17]  J. Herberholz,et al.  Decision Making and Behavioral Choice during Predator Avoidance , 2012, Front. Neurosci..

[18]  Joseph E LeDoux Coming to terms with fear , 2014, Proceedings of the National Academy of Sciences.

[19]  M. Tamietto,et al.  Neural bases of the non-conscious perception of emotional signals , 2010, Nature Reviews Neuroscience.

[20]  F Claire Rind,et al.  Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria , 2013, Journal of Experimental Biology.

[21]  J. Zeil,et al.  Natural visual cues eliciting predator avoidance in fiddler crabs , 2011, Proceedings of the Royal Society B: Biological Sciences.

[22]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[23]  Melina E. Hale,et al.  Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio) , 2011, Journal of Comparative Physiology.

[24]  M. O'Shea,et al.  Escape flight initiation in the fly , 2007, Journal of Comparative Physiology A.

[25]  M. Meister,et al.  Rapid Innate Defensive Responses of Mice to Looming Visual Stimuli , 2013, Current Biology.

[26]  A. Manira,et al.  A Hardwired Circuit Supplemented with Endocannabinoids Encodes Behavioral Choice in Zebrafish , 2015, Current Biology.

[27]  A. Saleem,et al.  Vision Guides Selection of Freeze or Flight Defense Strategies in Mice , 2016, Current Biology.

[28]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[29]  Jac Billington,et al.  Neural processing of imminent collision in humans , 2011, Proceedings of the Royal Society B: Biological Sciences.

[30]  H. Nakagawa,et al.  Collision-sensitive neurons in the optic tectum of the bullfrog, Rana catesbeiana. , 2006, Journal of neurophysiology.

[31]  G. Raposo,et al.  BLOC-1 Brings Together the Actin and Microtubule Cytoskeletons to Generate Recycling Endosomes , 2016, Current Biology.

[32]  Hang Zhang,et al.  Ubiquitous Log Odds: A Common Representation of Probability and Frequency Distortion in Perception, Action, and Cognition , 2012, Front. Neurosci..

[33]  J. Gibson Visually controlled locomotion and visual orientation in animals , 2009 .

[34]  Damián Oliva,et al.  Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice. , 2014, Journal of neurophysiology.

[35]  Daniel Tomsic,et al.  Brain Modularity in Arthropods: Individual Neurons That Support “What” But Not “Where” Memories , 2011, The Journal of Neuroscience.

[36]  Timothy W. Dunn,et al.  Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish , 2016, Neuron.

[37]  Saskia E. J. de Vries,et al.  Loom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System , 2012, Current Biology.

[38]  F. Claire Rind,et al.  Motor activity and trajectory control during escape jumping in the locust Locusta migratoria , 2005, Journal of Comparative Physiology A.

[39]  S. Zeng,et al.  Visual Cue-Discriminative Dopaminergic Control of Visuomotor Transformation and Behavior Selection , 2016, Neuron.

[40]  Damián Oliva,et al.  Visuo-motor transformations involved in the escape response to looming stimuli in the crab Neohelice (=Chasmagnathus) granulata , 2012, Journal of Experimental Biology.

[41]  Melina E. Hale,et al.  Alternative forms of axial startle behaviors in fishes. , 2014, Zoology.

[42]  Princess E. Osei-Bonsu,et al.  Neural Representation of Object Approach in a Decision-Making Motor Circuit , 2006, The Journal of Neuroscience.

[43]  Stella F. Lourenco,et al.  Threat modulates perception of looming visual stimuli , 2012, Current Biology.

[44]  Qian Wang,et al.  A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice , 2015, Science.

[45]  Andreas Pfeil,et al.  A multi-stage anti-predator response increases information on predation risk , 2010, Journal of Experimental Biology.

[46]  D. Tomsic,et al.  Identification of Individual Neurons Reflecting Short- and Long-Term Visual Memory in an Arthropodo , 2003, The Journal of Neuroscience.

[47]  G. Laurent,et al.  Collision-avoidance: nature's many solutions , 1998, Nature Neuroscience.

[48]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[49]  David J. Anderson,et al.  Behavioral Responses to a Repetitive Visual Threat Stimulus Express a Persistent State of Defensive Arousal in Drosophila , 2015, Current Biology.

[50]  Joan López-Moliner,et al.  Unifying Time to Contact Estimation and Collision Avoidance across Species , 2012, PLoS Comput. Biol..

[51]  Joseph E LeDoux Rethinking the Emotional Brain , 2012, Neuron.

[52]  H. Hecht,et al.  Luminance and contrast in visual perception of time to collision , 2013, Vision Research.

[53]  M. Hale,et al.  Evolution of the Mauthner Axon Cap , 2009, Brain, Behavior and Evolution.

[54]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[55]  Xiaohong Li,et al.  Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana , 2010, Neuroscience bulletin.

[56]  David J. Anderson,et al.  A Framework for Studying Emotions across Species , 2014, Cell.

[57]  John T. Gale,et al.  Defense-Like Behaviors Evoked by Pharmacological Disinhibition of the Superior Colliculus in the Primate , 2013, The Journal of Neuroscience.

[58]  B. Frost,et al.  Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons , 1998, Nature Neuroscience.

[59]  Robert C. Eaton,et al.  Neural Mechanisms of Startle Behavior , 1984 .

[60]  M. Phillips,et al.  Neural control of behavioural choice in juvenile crayfish , 2010, Proceedings of the Royal Society B: Biological Sciences.

[61]  M B Foreman,et al.  The direction change concept for reticulospinal control of goldfish escape , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.