Evidence that Listeria innocua modulates its membrane’s stored curvature elastic stress, but not fluidity, through the cell cycle

[1]  A. Klein Ready for its close-up , 2016 .

[2]  D. Scott,et al.  Three-Dimensional Distribution of Phospholipids in Gram Negative Bacteria. , 2016, Biochemistry.

[3]  Abhyudai Singh,et al.  A mechanistic stochastic framework for regulating bacterial cell division , 2015, Scientific Reports.

[4]  J. Fantini,et al.  Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein , 2016, Scientific Reports.

[5]  Johannes Griss,et al.  Greazy: Open-Source Software for Automated Phospholipid Tandem Mass Spectrometry Identification. , 2016, Analytical chemistry.

[6]  Abhyudai Singh,et al.  A mechanistic first–passage time framework for bacterial cell-division timing , 2015, bioRxiv.

[7]  W. Margolin,et al.  The bacterial divisome: ready for its close-up , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  J. Killian,et al.  E. coli MG1655 modulates its phospholipid composition through the cell cycle , 2015, FEBS letters.

[9]  O. Ces,et al.  Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1 , 2015, mBio.

[10]  O. Ces,et al.  Regulation of PLCβ2 by the electrostatic and mechanical properties of lipid bilayers , 2015, Scientific Reports.

[11]  L. Robert Size sensors in bacteria, cell cycle control, and size control , 2015, Front. Microbiol..

[12]  J. Killian,et al.  Isolation of lipids from biological samples , 2015, Molecular membrane biology.

[13]  J. Paulsson,et al.  Cell-Size Control and Homeostasis in Bacteria , 2015, Current Biology.

[14]  F. Hsu,et al.  Characterization of polar lipids of Listeria monocytogenes by HCD and low-energy CAD linear ion-trap mass spectrometry with electrospray ionization , 2015, Analytical and Bioanalytical Chemistry.

[15]  Setsu Kato,et al.  A Constant Size Extension Drives Bacterial Cell Size Homeostasis , 2014, Cell.

[16]  J. Suk,et al.  Sequence and membrane determinants of the random coil-helix transition of α-synuclein. , 2014, Journal of molecular biology.

[17]  W. Margolin,et al.  FtsZ Placement in Nucleoid-Free Bacteria , 2014, PloS one.

[18]  Leendert W. Hamoen,et al.  The actin homologue MreB organizes the bacterial cell membrane , 2014, Nature Communications.

[19]  Y. Kasahara,et al.  An essential enzyme for phospholipid synthesis associates with the Bacillus subtilis divisome , 2014, Molecular microbiology.

[20]  Sean X. Sun,et al.  Organization of FtsZ filaments in the bacterial division ring measured from polarized fluorescence microscopy. , 2013, Biophysical journal.

[21]  G. Pabst,et al.  Monolayer spontaneous curvature of raft-forming membrane lipids , 2013, Soft matter.

[22]  K. Muchová,et al.  The Role of Lipid Domains in Bacterial Cell Processes , 2013, International journal of molecular sciences.

[23]  S. Liddell,et al.  The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower) , 2013, Journal of chemical biology.

[24]  J. Johansson,et al.  A Listeria monocytogenes RNA Helicase Essential for Growth and Ribosomal Maturation at Low Temperatures Uses Its C Terminus for Appropriate Interaction with the Ribosome , 2012, Journal of bacteriology.

[25]  Z. Guan,et al.  Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli , 2010, Proceedings of the National Academy of Sciences.

[26]  C. Khosla,et al.  Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. , 2010, Metabolic engineering.

[27]  R. Krämer,et al.  Subcellular Localization and Characterization of the ParAB System from Corynebacterium glutamicum , 2010, Journal of bacteriology.

[28]  I. Diakogiannis,et al.  Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH , 2010, Antonie van Leeuwenhoek.

[29]  S. Lovett,et al.  The Stringent Response and Cell Cycle Arrest in Escherichia coli , 2008, PLoS genetics.

[30]  R. Templer,et al.  X-ray diffraction measurement of the monolayer spontaneous curvature of dioleoylphosphatidylglycerol. , 2008, Chemistry and physics of lipids.

[31]  V. Muñoz,et al.  Large-scale modulation of thermodynamic protein folding barriers linked to electrostatics , 2008, Proceedings of the National Academy of Sciences.

[32]  P. Magiatis,et al.  Coordinated Regulation of Cold-Induced Changes in Fatty Acids with Cardiolipin and Phosphatidylglycerol Composition among Phospholipid Species for the Food Pathogen Listeria monocytogenes , 2008, Applied and Environmental Microbiology.

[33]  Daniel P. Haeusser,et al.  The great divide: coordinating cell cycle events during bacterial growth and division. , 2008, Current opinion in microbiology.

[34]  C. Dijkema,et al.  Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. , 2008, Biochimica et biophysica acta.

[35]  E. Wanker,et al.  Alpha-synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. , 2008, Journal of molecular biology.

[36]  T. Jemmi,et al.  Listeria monocytogenes: food-borne pathogen and hygiene indicator. , 2006, Revue scientifique et technique.

[37]  Nancy Kleckner,et al.  The Escherichia coli baby cell column: a novel cell synchronization method provides new insight into the bacterial cell cycle , 2005, Molecular microbiology.

[38]  D. S. Weiss,et al.  Inhibiting Cell Division in Escherichia coli Has Little If Any Effect on Gene Expression , 2004, Journal of bacteriology.

[39]  M. Perrin,et al.  Fatal Case of Listeria innocua Bacteremia , 2003, Journal of Clinical Microbiology.

[40]  E. Fuglebakk,et al.  The Interaction of Peripheral Proteins and Membranes Studied with α-Lactalbumin and Phospholipid Bilayers of Various Compositions* , 2003, Journal of Biological Chemistry.

[41]  J. Mingorance,et al.  Concentration and Assembly of the Division Ring Proteins FtsZ, FtsA, and ZipA during the Escherichia coli Cell Cycle , 2003, Journal of bacteriology.

[42]  M. Monduzzi,et al.  Quantitative characterization of phospholipids in milk fat via31P NMR using a monophasic solvent mixture , 2003, Lipids.

[43]  T. Hunt NOBEL LECTURE: Protein Synthesis, Proteolysis, and Cell Cycle Transitions , 2002, Bioscience reports.

[44]  P. Nurse Cyclin-Dependent Kinases and Cell Cycle Control (Nobel Lecture). , 2002 .

[45]  L. Hartwell NOBEL LECTURE: Yeast and Cancer , 2002, Bioscience reports.

[46]  E. Domann,et al.  Genome organization and the evolution of the virulence gene locus in Listeria species. , 2000, International journal of medical microbiology : IJMM.

[47]  A. Verkleij,et al.  Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. , 1999, Biophysical journal.

[48]  J. Cronan,et al.  Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli , 1999, Molecular microbiology.

[49]  W. Fischer,et al.  Polar lipids of four Listeria species containing L-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. , 1999, International journal of systematic bacteriology.

[50]  N. Culeddu,et al.  31P NMR analysis of phospholipids in crude extracts from different sources: improved efficiency of the solvent system , 1998 .

[51]  W. Margolin,et al.  Assembly of the FtsZ ring at the central division site in the absence of the chromosome , 1998, Molecular microbiology.

[52]  J. Cronan,et al.  Cyclopropane ring formation in membrane lipids of bacteria , 1997, Microbiology and molecular biology reviews : MMBR.

[53]  T. Stokke,et al.  Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Killian,et al.  Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. , 1994, Biochimica et biophysica acta.

[55]  H. Goldfine,et al.  Nonspecific phospholipase C of Listeria monocytogenes: activity on phospholipids in Triton X-100-mixed micelles and in biological membranes , 1993, Journal of bacteriology.

[56]  J. Killian,et al.  Polymorphic regulation of membrane phospholipid composition in Escherichia coli. , 1993, The Journal of biological chemistry.

[57]  R. Epand,et al.  Formation of a new stable phase of phosphatidylglycerols. , 1992, Biophysical journal.

[58]  J. Seddon,et al.  Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. , 1990, Biochimica et biophysica acta.

[59]  K. Skarstad,et al.  Timing of chromosomal replication in Escherichia coli. , 1988, Biochimica et biophysica acta.

[60]  N. Murata,et al.  Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. , 1984, Plant physiology.

[61]  D. Marsh,et al.  Induction of the lamellar-inverted hexagonal phase transition in cardiolipin by protons and monovalent cations , 1983 .

[62]  D. Marsh,et al.  Gel-to-inverted hexagonal (L beta-HII) phase transitions in phosphatidylethanolamines and fatty acid-phosphatidylcholine mixtures, demonstrated by 31P-NMR spectroscopy and x-ray diffraction. , 1982, Biochimica et biophysica acta.

[63]  H. Hauser,et al.  Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. , 1981, Biochimica et biophysica acta.

[64]  J. Op den Kamp,et al.  Cardiolipin, a major phospholipid of Gram-positive bacteria that is not readily extractable. , 1980, Biochimica et biophysica acta.

[65]  B. de Kruijff,et al.  Lipid polymorphism and the functional roles of lipids in biological membranes. , 1979, Biochimica et biophysica acta.

[66]  B. de Kruijff,et al.  The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study. , 1978, Biochimica et biophysica acta.

[67]  P. Barton,et al.  Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions. , 1978, Biochemistry.

[68]  J. Seelig,et al.  Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance. , 1976, Biochemistry.

[69]  L. Ingram Adaptation of membrane lipids to alcohols , 1976, Journal of bacteriology.

[70]  B. K. Ghosh,et al.  Isolation, Composition, and Structure of Membrane of Listeria monocytogenes , 1968, Journal of bacteriology.

[71]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.

[72]  A. Giese,et al.  Interaction of α-synuclein with biomembranes in Parkinson's disease--role of cardiolipin. , 2016, Progress in lipid research.

[73]  G. Meer,et al.  Lipid Map of the Mammalian Cell , 2011 .

[74]  N. Chihib,et al.  Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions. , 2003, FEMS microbiology letters.

[75]  N. Lecture Protein Synthesis, Proteolysis, and Cell Cycle Transitions , 2002 .

[76]  N. Lecture Yeast and Cancer , 2002 .

[77]  A. Steinbüchel,et al.  A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds , 1999, Archives of Microbiology.

[78]  M. Caffrey,et al.  Phases and phase transitions of the hydrated phosphatidylethanolamines. , 1994, Chemistry and physics of lipids.

[79]  H. Hof,et al.  Dependence of fatty acid composition of Listeria spp. on growth temperature. , 1993, Research in microbiology.

[80]  E. Boye,et al.  Bacterial growth control studied by flow cytometry. , 1991, Research in microbiology.

[81]  Timing of initiation of chromosome replication in individual Escherichia coli cells. , 1986, The EMBO journal.