Modelling detonation waves in heterogeneous energetic materials
暂无分享,去创建一个
[1] T. Young,et al. CHEMEQ - A Subroutine for Solving Stiff Ordinary Differential Equations , 1980 .
[2] M. Lallemand,et al. Pressure relaxation procedures for multiphase compressible flows , 2005 .
[3] R. Abgrall. How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .
[4] Richard Saurel,et al. Mathematical and numerical modeling of two-phase compressible flows with micro-inertia , 2002 .
[5] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[6] Keh-Ming Shyue,et al. An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .
[7] Alexandre J. Chorin,et al. Random choice methods with applications to reacting gas flow , 1977 .
[8] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[9] D. Drew,et al. Theory of Multicomponent Fluids , 1998 .
[10] M. Baer,et al. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .
[11] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[12] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[13] Steven F. Son,et al. Two-phase modeling of DDT: Structure of the velocity-relaxation zone , 1997 .
[14] Ronald Fedkiw,et al. An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows , 1999 .
[15] R Abgrall. HOW TO PREVENT PRESSURE OSCILLATIONS IN MULTICOMPONENT FLOWS: A QUASI-CONSERVATIVE APPROACH , 1996 .
[16] Rémi Abgrall,et al. Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .
[17] R. Abgrall,et al. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .
[18] D. Stewart,et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .
[19] Richard Saurel,et al. Modelling evaporation fronts with reactive Riemann solvers , 2005 .
[20] S. Osher,et al. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .
[21] Jean-Marc Hérard,et al. Some recent finite volume schemes to compute Euler equations using real gas EOS , 2002 .
[22] B. V. Leer,et al. A quasi-steady state solver for the stiff ordinary differential equations of reaction kinetics , 2000 .
[23] Steven F. Son,et al. Two-Phase Modeling of DDT in Granular Materials: Reduced Equations , 2000 .
[24] Smadar Karni,et al. Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .
[25] Richard Saurel,et al. A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation , 2001, Journal of Fluid Mechanics.
[26] D. Mott,et al. New Quasi-Steady-State And Partial-Equilibrium Methods For Integrating Chemically Reacting Systems , 1999 .
[27] Rémi Abgrall,et al. A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..
[28] Smadar Karni,et al. Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..
[29] Rémi Abgrall,et al. Discrete equations for physical and numerical compressible multiphase mixtures , 2003 .
[30] P. B. Butler,et al. Shock Development and Transition to Detonation Initiated by Burning in Porous Propellant Beds , 1981 .
[31] Heuzé. Equations of state of detonation products: Influence of the repulsive intermolecular potential. , 1986, Physical review. A, General physics.
[32] S. Marsh. Lasl Shock Hugoniot Data , 1980 .
[33] J. Chan,et al. Shock initiation and detonation models in one and two dimensions. [PBX-9404, RX-03-BB] , 1979 .
[34] J. Craggs. Applied Mathematical Sciences , 1973 .