Global Coupled Learning and Local Consistencies Ensuring for sparse-based tracking

This paper presents a robust tracking algorithm by sparsely representing the object at both global and local levels. Accordingly, the algorithm is constructed by two complementary parts: Global Coupled Learning (GCL) part and Local Consistencies Ensuring (LCE) part. The global part is a discriminative model which aims to utilize the holistic features of the object via an over-complete global dictionary and classifier, and the dictionary and classifier are coupled learning to construct an adaptive GCL part. While in LCE part, we explore the object?s local features by sparsely coding the object patches via a local dictionary, then both temporal and spatial consistencies of the local patches are ensured to refine the tracking results. Moreover, the GCL and LCE parts are integrated into a Bayesian framework for constructing the final tracker. Experiments on fifteen benchmark challenging sequences demonstrate that the proposed algorithm has more effectiveness and robustness than the alternative ten state-of-the-art trackers. HighlightsWe sparsely represent the object in both global and local level for tracking, which aim to explore the object?s holistic and local information respectively.The global dictionary and classifier are coupled learned in our global part.We define temporal and spatial consistencies among the object patches, and refine the tracking result by ensuring the consistencies.

[1]  Li Bai,et al.  Efficient Minimum Error Bounded Particle Resampling L1 Tracker With Occlusion Detection , 2013, IEEE Transactions on Image Processing.

[2]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Zhibin Hong,et al.  Tracking via Robust Multi-task Multi-view Joint Sparse Representation , 2013, 2013 IEEE International Conference on Computer Vision.

[4]  Larry S. Davis,et al.  Online discriminative dictionary learning for visual tracking , 2014, IEEE Winter Conference on Applications of Computer Vision.

[5]  Gérard G. Medioni,et al.  Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers , 2008, ECCV.

[6]  Zhibin Hong,et al.  Tracking Using Multilevel Quantizations , 2014, ECCV.

[7]  Z. M. Hefed Object tracking , 1999 .

[8]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[10]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Tobias Bjerregaard,et al.  A survey of research and practices of Network-on-chip , 2006, CSUR.

[14]  Qing Wang,et al.  Online discriminative object tracking with local sparse representation , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[15]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[16]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Jean Ponce,et al.  Task-Driven Dictionary Learning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[20]  Thang Ba Co-training Framework of Generative and Discriminative Trackers with Partial Occlusion Handling , 2010 .

[21]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Ming-Hsuan Yang,et al.  Top-down visual saliency via joint CRF and dictionary learning , 2012, CVPR.

[23]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[24]  Forsyth,et al.  Computer Vision , 2007 .

[25]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[26]  Carlo Tomasi,et al.  Efficient Visual Object Tracking with Online Nearest Neighbor Classifier , 2010, ACCV.

[27]  Zhibin Hong,et al.  Dual-Force Metric Learning for Robust Distracter-Resistant Tracker , 2012, ECCV.

[28]  Yuan Xie,et al.  Discriminative Object Tracking via Sparse Representation and Online Dictionary Learning , 2014, IEEE Transactions on Cybernetics.

[29]  YaoHongxun,et al.  Sparse coding based visual tracking , 2013 .

[30]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[31]  Youfu Li,et al.  Robust visual tracking with structured sparse representation appearance model , 2012, Pattern Recognit..

[32]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[34]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[35]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[36]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[37]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[38]  Yuan Xie,et al.  Discriminative subspace learning with sparse representation view-based model for robust visual tracking , 2014, Pattern Recognit..

[39]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[40]  Kevin Cannons,et al.  A Review of Visual Tracking , 2008 .

[41]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[42]  Stefan Duffner,et al.  PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects , 2013, ICCV.

[43]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Hanqing Lu,et al.  A robust boosting tracker with minimum error bound in a co-training framework , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[45]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[46]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[47]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[48]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.