Dissipation discontinuities in hydromagnetic shock waves

Within the hydromagnetic approximation, the effects of resistive, viscous, and thermal conduction dissipation on the structure of shock waves is studied. A Perturbation analysis about the upstream and downstream stationary points is developed, which, when coupled with the shock evolutionary conditions, determines the conditions for the formation of discontinuities in the shock structure. The Viscous subshock for fast shock waves and the hydromagnetic analogue of the gas dynamic isothermal discontinuity for fast and slow shocks are analyzed. Very oblique fast shocks require both resistive and viscous dissipation for a steady shock structure. Strong slow shocks propagationg nearly along the magnetic field fail to steepen if only resistive dissipation is included. The rotational discontinuity does not possess a stable shock structure for any of the dissipation processes considered.